Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,472 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from pathlib import Path
|
3 |
+
from typing import List, Union
|
4 |
+
from PIL import Image
|
5 |
+
import ezdxf.units
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
from torchvision import transforms
|
9 |
+
from ultralytics import YOLOWorld, YOLO
|
10 |
+
from ultralytics.engine.results import Results
|
11 |
+
from ultralytics.utils.plotting import save_one_box
|
12 |
+
from transformers import AutoModelForImageSegmentation
|
13 |
+
import cv2
|
14 |
+
import ezdxf
|
15 |
+
import gradio as gr
|
16 |
+
import zipfile
|
17 |
+
import datetime
|
18 |
+
|
19 |
+
from scalingtestupdated import calculate_scaling_factor
|
20 |
+
from shapely.geometry import Polygon, Point
|
21 |
+
from scipy.interpolate import splprep, splev
|
22 |
+
from scipy.ndimage import gaussian_filter1d
|
23 |
+
|
24 |
+
###############################################################################
|
25 |
+
# 1) Single-Image Pipeline & Utilities (Simplified)
|
26 |
+
###############################################################################
|
27 |
+
|
28 |
+
# Load Segmentation Model (BiRefNet)
|
29 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
30 |
+
"zhengpeng7/BiRefNet", trust_remote_code=True
|
31 |
+
)
|
32 |
+
device = "cpu"
|
33 |
+
torch.set_float32_matmul_precision(["high", "highest"][0])
|
34 |
+
birefnet.to(device)
|
35 |
+
birefnet.eval()
|
36 |
+
|
37 |
+
transform_image = transforms.Compose([
|
38 |
+
transforms.Resize((1024, 1024)),
|
39 |
+
transforms.ToTensor(),
|
40 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
41 |
+
])
|
42 |
+
|
43 |
+
|
44 |
+
def yolo_detect(image: Union[str, Path, int, Image.Image, list, tuple, np.ndarray, torch.Tensor],
|
45 |
+
classes: List[str]) -> np.ndarray:
|
46 |
+
"""Detects the drawer (box) in the image using YOLOWorld."""
|
47 |
+
drawer_detector = YOLOWorld("yolov8x-worldv2.pt")
|
48 |
+
drawer_detector.set_classes(classes)
|
49 |
+
results: List[Results] = drawer_detector.predict(image)
|
50 |
+
boxes = []
|
51 |
+
for result in results:
|
52 |
+
boxes.append(save_one_box(result.cpu().boxes.xyxy, im=result.orig_img, save=False))
|
53 |
+
del drawer_detector
|
54 |
+
return boxes[0]
|
55 |
+
|
56 |
+
|
57 |
+
def resize_img(img: np.ndarray, resize_dim):
|
58 |
+
return np.array(Image.fromarray(img).resize(resize_dim))
|
59 |
+
|
60 |
+
|
61 |
+
def remove_bg(image: np.ndarray) -> np.ndarray:
|
62 |
+
"""Removes background using BiRefNet, returning a binary mask."""
|
63 |
+
image_pil = Image.fromarray(image)
|
64 |
+
input_images = transform_image(image_pil).unsqueeze(0).to(device)
|
65 |
+
with torch.no_grad():
|
66 |
+
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
67 |
+
pred = preds[0].squeeze()
|
68 |
+
pred_pil: Image = transforms.ToPILImage()(pred)
|
69 |
+
scale_ratio = 1024 / max(image_pil.size)
|
70 |
+
scaled_size = (int(image_pil.size[0] * scale_ratio), int(image_pil.size[1] * scale_ratio))
|
71 |
+
return np.array(pred_pil.resize(scaled_size))
|
72 |
+
|
73 |
+
|
74 |
+
def make_square(img: np.ndarray):
|
75 |
+
"""Pads an image to be square (max dimension)."""
|
76 |
+
height, width = img.shape[:2]
|
77 |
+
max_dim = max(height, width)
|
78 |
+
pad_height = (max_dim - height) // 2
|
79 |
+
pad_width = (max_dim - width) // 2
|
80 |
+
pad_height_extra = max_dim - height - 2 * pad_height
|
81 |
+
pad_width_extra = max_dim - width - 2 * pad_width
|
82 |
+
if len(img.shape) == 3:
|
83 |
+
padded = np.pad(img, ((pad_height, pad_height + pad_height_extra),
|
84 |
+
(pad_width, pad_width + pad_width_extra), (0, 0)), mode="edge")
|
85 |
+
else:
|
86 |
+
padded = np.pad(img, ((pad_height, pad_height + pad_height_extra),
|
87 |
+
(pad_width, pad_width + pad_width_extra)), mode="edge")
|
88 |
+
return padded
|
89 |
+
|
90 |
+
|
91 |
+
def exclude_scaling_box(image: np.ndarray, bbox: np.ndarray, orig_size: tuple, processed_size: tuple,
|
92 |
+
expansion_factor: float = 1.2) -> np.ndarray:
|
93 |
+
"""Zeros out the area of the reference square from the binary mask."""
|
94 |
+
x_min, y_min, x_max, y_max = map(int, bbox)
|
95 |
+
scale_x = processed_size[1] / orig_size[1]
|
96 |
+
scale_y = processed_size[0] / orig_size[0]
|
97 |
+
x_min = int(x_min * scale_x)
|
98 |
+
x_max = int(x_max * scale_x)
|
99 |
+
y_min = int(y_min * scale_y)
|
100 |
+
y_max = int(y_max * scale_y)
|
101 |
+
box_width = x_max - x_min
|
102 |
+
box_height = y_max - y_min
|
103 |
+
expanded_x_min = max(0, int(x_min - (expansion_factor - 1) * box_width / 2))
|
104 |
+
expanded_x_max = min(image.shape[1], int(x_max + (expansion_factor - 1) * box_width / 2))
|
105 |
+
expanded_y_min = max(0, int(y_min - (expansion_factor - 1) * box_height / 2))
|
106 |
+
expanded_y_max = min(image.shape[0], int(y_max + (expansion_factor - 1) * box_height / 2))
|
107 |
+
image[expanded_y_min:expanded_y_max, expanded_x_min:expanded_x_max] = 0
|
108 |
+
return image
|
109 |
+
|
110 |
+
|
111 |
+
def resample_contour(contour):
|
112 |
+
"""Resamples a contour to ~1000 points using spline interpolation and smoothing."""
|
113 |
+
num_points = 1000
|
114 |
+
smoothing_factor = 5
|
115 |
+
spline_degree = 3
|
116 |
+
if len(contour) < spline_degree + 1:
|
117 |
+
raise ValueError("Contour must have at least 4 points.")
|
118 |
+
contour = contour[:, 0, :]
|
119 |
+
tck, _ = splprep([contour[:, 0], contour[:, 1]], s=smoothing_factor)
|
120 |
+
u = np.linspace(0, 1, num_points)
|
121 |
+
resampled_points = splev(u, tck)
|
122 |
+
smoothed_x = gaussian_filter1d(resampled_points[0], sigma=1)
|
123 |
+
smoothed_y = gaussian_filter1d(resampled_points[1], sigma=1)
|
124 |
+
return np.array([smoothed_x, smoothed_y]).T
|
125 |
+
|
126 |
+
|
127 |
+
def extract_outlines(binary_image: np.ndarray):
|
128 |
+
"""Finds external contours in a binary mask, returns the outline image and the list of contours."""
|
129 |
+
contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
130 |
+
outline_image = np.zeros_like(binary_image)
|
131 |
+
cv2.drawContours(outline_image, contours, -1, (255), thickness=1)
|
132 |
+
return cv2.bitwise_not(outline_image), contours
|
133 |
+
|
134 |
+
|
135 |
+
def shrink_bbox(image: np.ndarray, shrink_factor: float):
|
136 |
+
"""Shrinks the bounding box around the image by a certain factor."""
|
137 |
+
height, width = image.shape[:2]
|
138 |
+
center_x, center_y = width // 2, height // 2
|
139 |
+
new_width = int(width * shrink_factor)
|
140 |
+
new_height = int(height * shrink_factor)
|
141 |
+
x1 = max(center_x - new_width // 2, 0)
|
142 |
+
y1 = max(center_y - new_height // 2, 0)
|
143 |
+
x2 = min(center_x + new_width // 2, width)
|
144 |
+
y2 = min(center_y + new_height // 2, height)
|
145 |
+
return image[y1:y2, x1:x2]
|
146 |
+
|
147 |
+
|
148 |
+
def detect_reference_square(img) -> np.ndarray:
|
149 |
+
"""Detects the reference square in the image using a YOLO model saved in './last.pt'."""
|
150 |
+
box_detector = YOLO("./last.pt")
|
151 |
+
res = box_detector.predict(img, conf=0.05)
|
152 |
+
del box_detector
|
153 |
+
if len(res) == 0 or len(res[0].boxes) == 0:
|
154 |
+
raise ValueError("No reference square found.")
|
155 |
+
cropped_img = save_one_box(res[0].cpu().boxes.xyxy, res[0].orig_img, save=False)
|
156 |
+
coords = res[0].cpu().boxes.xyxy[0]
|
157 |
+
return cropped_img, coords
|
158 |
+
|
159 |
+
|
160 |
+
def build_tool_polygon(points_inch):
|
161 |
+
return Polygon(points_inch)
|
162 |
+
|
163 |
+
|
164 |
+
def polygon_to_exterior_coords(poly: Polygon):
|
165 |
+
"""Gets the exterior coordinates of a polygon (or the largest piece if MultiPolygon)."""
|
166 |
+
if poly.geom_type == "MultiPolygon":
|
167 |
+
poly = max(poly.geoms, key=lambda g: g.area)
|
168 |
+
if not poly.exterior:
|
169 |
+
return []
|
170 |
+
return list(poly.exterior.coords)
|
171 |
+
|
172 |
+
|
173 |
+
def save_dxf_spline(inflated_contours, scaling_factor, height):
|
174 |
+
"""Creates a DXF with splines from the inflated contours."""
|
175 |
+
doc = ezdxf.new(units=0)
|
176 |
+
doc.units = ezdxf.units.IN
|
177 |
+
doc.header["$INSUNITS"] = ezdxf.units.IN
|
178 |
+
msp = doc.modelspace()
|
179 |
+
final_polygons_inch = []
|
180 |
+
for contour in inflated_contours:
|
181 |
+
try:
|
182 |
+
resampled = resample_contour(contour)
|
183 |
+
points_inch = [(x * scaling_factor, (height - y) * scaling_factor) for (x, y) in resampled]
|
184 |
+
if len(points_inch) < 3:
|
185 |
+
continue
|
186 |
+
if np.linalg.norm(np.array(points_inch[0]) - np.array(points_inch[-1])) > 1e-6:
|
187 |
+
points_inch.append(points_inch[0])
|
188 |
+
tool_polygon = build_tool_polygon(points_inch)
|
189 |
+
exterior_coords = polygon_to_exterior_coords(tool_polygon)
|
190 |
+
if len(exterior_coords) < 3:
|
191 |
+
continue
|
192 |
+
msp.add_spline(exterior_coords, degree=3, dxfattribs={"layer": "TOOLS"})
|
193 |
+
final_polygons_inch.append(tool_polygon)
|
194 |
+
except ValueError as e:
|
195 |
+
print(f"Skipping contour: {e}")
|
196 |
+
return doc, final_polygons_inch
|
197 |
+
|
198 |
+
|
199 |
+
def draw_polygons_inch(polygons_inch, image_rgb, scaling_factor, image_height,
|
200 |
+
color=(0, 255, 0), thickness=1):
|
201 |
+
"""Draws polygons on an image for visualization."""
|
202 |
+
for poly in polygons_inch:
|
203 |
+
if poly.geom_type == "MultiPolygon":
|
204 |
+
for subpoly in poly.geoms:
|
205 |
+
draw_single_polygon(subpoly, image_rgb, scaling_factor, image_height, color, thickness)
|
206 |
+
else:
|
207 |
+
draw_single_polygon(poly, image_rgb, scaling_factor, image_height, color, thickness)
|
208 |
+
|
209 |
+
|
210 |
+
def draw_single_polygon(poly, image_rgb, scaling_factor, image_height,
|
211 |
+
color=(0, 255, 0), thickness=1):
|
212 |
+
"""Helper to draw a single polygon."""
|
213 |
+
ext = list(poly.exterior.coords)
|
214 |
+
if len(ext) < 3:
|
215 |
+
return
|
216 |
+
pts_px = []
|
217 |
+
for (x_in, y_in) in ext:
|
218 |
+
px = int(x_in / scaling_factor)
|
219 |
+
py = int(image_height - (y_in / scaling_factor))
|
220 |
+
pts_px.append([px, py])
|
221 |
+
pts_px = np.array(pts_px, dtype=np.int32)
|
222 |
+
cv2.polylines(image_rgb, [pts_px], isClosed=True, color=color, thickness=thickness, lineType=cv2.LINE_AA)
|
223 |
+
|
224 |
+
###############################################################################
|
225 |
+
# 2) Single-Image Predict (Only Image & Offset)
|
226 |
+
###############################################################################
|
227 |
+
def predict(image, offset, offset_unit):
|
228 |
+
# Convert offset to inches if necessary
|
229 |
+
if offset_unit == "mm":
|
230 |
+
offset_inches = offset / 25.4
|
231 |
+
else:
|
232 |
+
offset_inches = offset
|
233 |
+
|
234 |
+
try:
|
235 |
+
drawer_img = yolo_detect(image, ["box"])
|
236 |
+
shrunked_img = make_square(shrink_bbox(drawer_img, 0.90))
|
237 |
+
except Exception as e:
|
238 |
+
raise gr.Error("Unable to DETECT DRAWER. Please try a different image or angle!") from e
|
239 |
+
|
240 |
+
try:
|
241 |
+
reference_obj_img, scaling_box_coords = detect_reference_square(shrunked_img)
|
242 |
+
except Exception as e:
|
243 |
+
raise gr.Error("Unable to DETECT REFERENCE BOX. Please try a different image!") from e
|
244 |
+
|
245 |
+
reference_obj_img = make_square(reference_obj_img)
|
246 |
+
reference_square_mask = remove_bg(reference_obj_img)
|
247 |
+
reference_square_mask = resize_img(reference_square_mask, (reference_obj_img.shape[1], reference_obj_img.shape[0]))
|
248 |
+
|
249 |
+
try:
|
250 |
+
scaling_factor = calculate_scaling_factor(
|
251 |
+
reference_image_path="./Reference_ScalingBox.jpg",
|
252 |
+
target_image=reference_square_mask,
|
253 |
+
feature_detector="ORB",
|
254 |
+
)
|
255 |
+
except ZeroDivisionError:
|
256 |
+
scaling_factor = None
|
257 |
+
print("Error calculating scaling factor: Division by zero")
|
258 |
+
except Exception as e:
|
259 |
+
scaling_factor = None
|
260 |
+
print(f"Error calculating scaling factor: {e}")
|
261 |
+
|
262 |
+
if scaling_factor is None or scaling_factor == 0:
|
263 |
+
scaling_factor = 1.0
|
264 |
+
print("Using default scaling factor of 1.0 due to calculation error")
|
265 |
+
|
266 |
+
orig_size = shrunked_img.shape[:2]
|
267 |
+
objects_mask = remove_bg(shrunked_img)
|
268 |
+
processed_size = objects_mask.shape[:2]
|
269 |
+
|
270 |
+
# Exclude the reference square from the mask
|
271 |
+
objects_mask = exclude_scaling_box(objects_mask, scaling_box_coords, orig_size, processed_size, expansion_factor=1.2)
|
272 |
+
objects_mask = resize_img(objects_mask, (shrunked_img.shape[1], shrunked_img.shape[0]))
|
273 |
+
|
274 |
+
if scaling_factor != 0:
|
275 |
+
offset_pixels = (offset_inches / scaling_factor) * 2 + 1
|
276 |
+
else:
|
277 |
+
offset_pixels = 1
|
278 |
+
|
279 |
+
dilated_mask = cv2.dilate(objects_mask, np.ones((int(offset_pixels), int(offset_pixels)), np.uint8))
|
280 |
+
outlines, contours = extract_outlines(dilated_mask)
|
281 |
+
|
282 |
+
color_output = cv2.cvtColor(shrunked_img, cv2.COLOR_BGR2RGB)
|
283 |
+
outlines_bgr = cv2.cvtColor(outlines, cv2.COLOR_GRAY2BGR)
|
284 |
+
|
285 |
+
image_height, image_width = shrunked_img.shape[:2]
|
286 |
+
doc, final_polygons_inch = save_dxf_spline(inflated_contours=contours, scaling_factor=scaling_factor, height=image_height)
|
287 |
+
|
288 |
+
# Draw tool outlines on images
|
289 |
+
draw_polygons_inch(final_polygons_inch, color_output, scaling_factor, image_height, color=(0, 255, 0), thickness=1)
|
290 |
+
draw_polygons_inch(final_polygons_inch, outlines_bgr, scaling_factor, image_height, color=(0, 255, 0), thickness=1)
|
291 |
+
|
292 |
+
outlines_color = cv2.cvtColor(outlines_bgr, cv2.COLOR_BGR2RGB)
|
293 |
+
|
294 |
+
# Save DXF file
|
295 |
+
dxf_filepath = os.path.join("./outputs", "out.dxf")
|
296 |
+
doc.saveas(dxf_filepath)
|
297 |
+
|
298 |
+
return color_output, outlines_color, dxf_filepath, dilated_mask, str(scaling_factor)
|
299 |
+
|
300 |
+
###############################################################################
|
301 |
+
# 3) Batch Processing (Up to 4 Images; Retry Faulty Ones Separately)
|
302 |
+
###############################################################################
|
303 |
+
def batch_predict(images, offsets_str, offset_unit):
|
304 |
+
offsets = [float(x.strip()) for x in offsets_str.split(",")]
|
305 |
+
if len(images) != len(offsets):
|
306 |
+
raise gr.Error("The number of images and offsets must match!")
|
307 |
+
|
308 |
+
final_images = []
|
309 |
+
outline_images = []
|
310 |
+
mask_images = []
|
311 |
+
scale_factors_dict = {}
|
312 |
+
dxf_files = {}
|
313 |
+
|
314 |
+
error_indices = []
|
315 |
+
now_str = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
316 |
+
zip_path = f"./outputs/batch_{now_str}.zip"
|
317 |
+
zipf = zipfile.ZipFile(zip_path, "w", zipfile.ZIP_DEFLATED)
|
318 |
+
|
319 |
+
for i, img_path in enumerate(images):
|
320 |
+
try:
|
321 |
+
img_pil = Image.open(img_path).convert("RGB")
|
322 |
+
img_np = np.array(img_pil)
|
323 |
+
offset = offsets[i]
|
324 |
+
color_output, outlines_img, dxf_path, mask_img, sfactor = predict(img_np, offset, offset_unit)
|
325 |
+
final_images.append(Image.fromarray(color_output))
|
326 |
+
outline_images.append(Image.fromarray(outlines_img))
|
327 |
+
mask_images.append(Image.fromarray(mask_img))
|
328 |
+
scale_factors_dict[str(i)] = sfactor
|
329 |
+
base_name = os.path.splitext(os.path.basename(img_path))[0]
|
330 |
+
unique_dxf = f"./outputs/{base_name}_{i}.dxf"
|
331 |
+
os.rename(dxf_path, unique_dxf)
|
332 |
+
dxf_files[i] = unique_dxf
|
333 |
+
zipf.write(unique_dxf, arcname=os.path.basename(unique_dxf))
|
334 |
+
except Exception as e:
|
335 |
+
error_indices.append(i)
|
336 |
+
final_images.append(None)
|
337 |
+
outline_images.append(None)
|
338 |
+
mask_images.append(None)
|
339 |
+
scale_factors_dict[str(i)] = f"Error: {str(e)}"
|
340 |
+
zipf.close()
|
341 |
+
return final_images, outline_images, zip_path, mask_images, scale_factors_dict, error_indices
|
342 |
+
|
343 |
+
|
344 |
+
def retry_predict(index, image_path, offset, offset_unit, current_zip_path, current_scale_factors):
|
345 |
+
"""
|
346 |
+
Retry processing a single faulty image. Returns updated outputs for that image and updated zip & scale factors.
|
347 |
+
"""
|
348 |
+
try:
|
349 |
+
img_pil = Image.open(image_path).convert("RGB")
|
350 |
+
img_np = np.array(img_pil)
|
351 |
+
color_output, outlines_img, dxf_path, mask_img, sfactor = predict(img_np, offset, offset_unit)
|
352 |
+
processed_img = Image.fromarray(color_output)
|
353 |
+
outline_img = Image.fromarray(outlines_img)
|
354 |
+
mask_image = Image.fromarray(mask_img)
|
355 |
+
base_name = os.path.splitext(os.path.basename(image_path))[0]
|
356 |
+
unique_dxf = f"./outputs/{base_name}_{index}.dxf"
|
357 |
+
os.rename(dxf_path, unique_dxf)
|
358 |
+
# Append the new DXF to the existing zip archive.
|
359 |
+
with zipfile.ZipFile(current_zip_path, "a", zipfile.ZIP_DEFLATED) as zipf:
|
360 |
+
zipf.write(unique_dxf, arcname=os.path.basename(unique_dxf))
|
361 |
+
current_scale_factors[str(index)] = sfactor
|
362 |
+
return processed_img, outline_img, mask_image, unique_dxf, current_zip_path, current_scale_factors, ""
|
363 |
+
except Exception as e:
|
364 |
+
return None, None, None, None, current_zip_path, current_scale_factors, str(e)
|
365 |
+
|
366 |
+
###############################################################################
|
367 |
+
# 4) Gradio UI
|
368 |
+
###############################################################################
|
369 |
+
if __name__ == "__main__":
|
370 |
+
os.makedirs("./outputs", exist_ok=True)
|
371 |
+
|
372 |
+
with gr.Blocks() as demo:
|
373 |
+
gr.Markdown("## Choose Processing Mode")
|
374 |
+
|
375 |
+
# Radio to pick Single or Batch
|
376 |
+
mode_select = gr.Radio(choices=["Single", "Batch"], value="Single", label="Select Mode")
|
377 |
+
single_section = gr.Group(visible=True)
|
378 |
+
batch_section = gr.Group(visible=False)
|
379 |
+
retry_section = gr.Group(visible=False)
|
380 |
+
|
381 |
+
# Toggle mode visibility
|
382 |
+
def toggle_mode(mode):
|
383 |
+
if mode == "Single":
|
384 |
+
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
|
385 |
+
else:
|
386 |
+
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
|
387 |
+
mode_select.change(fn=toggle_mode, inputs=mode_select, outputs=[single_section, batch_section, retry_section])
|
388 |
+
|
389 |
+
#######################################################################
|
390 |
+
# Single-Image Section
|
391 |
+
#######################################################################
|
392 |
+
with single_section:
|
393 |
+
gr.Markdown("### Single-Image Processing")
|
394 |
+
with gr.Row():
|
395 |
+
with gr.Column():
|
396 |
+
image_input = gr.Image(label="Input Image")
|
397 |
+
offset_input = gr.Number(label="Offset", value=0.075)
|
398 |
+
offset_unit_input = gr.Dropdown(label="Offset Unit", choices=["inches", "mm"], value="inches")
|
399 |
+
submit_btn = gr.Button("Submit Single")
|
400 |
+
clear_btn = gr.Button("Clear Single")
|
401 |
+
with gr.Column():
|
402 |
+
output_image = gr.Image(label="Output Image")
|
403 |
+
outlines_image = gr.Image(label="Outlined Image")
|
404 |
+
dxf_file = gr.File(label="DXF File")
|
405 |
+
mask_image = gr.Image(label="Mask")
|
406 |
+
scaling_factor_txt = gr.Textbox(label="Scaling Factor (inches/pixel)", placeholder="Computed value")
|
407 |
+
submit_btn.click(fn=predict,
|
408 |
+
inputs=[image_input, offset_input, offset_unit_input],
|
409 |
+
outputs=[output_image, outlines_image, dxf_file, mask_image, scaling_factor_txt])
|
410 |
+
clear_btn.click(fn=lambda: (None, None, None, None, ""),
|
411 |
+
inputs=[], outputs=[output_image, outlines_image, dxf_file, mask_image, scaling_factor_txt])
|
412 |
+
|
413 |
+
#######################################################################
|
414 |
+
# Batch Section
|
415 |
+
#######################################################################
|
416 |
+
# Helper function to limit files to a maximum of 4
|
417 |
+
def limit_files(file_list):
|
418 |
+
"""If more than 4 files are uploaded, return only the first 4."""
|
419 |
+
if file_list is None:
|
420 |
+
return None
|
421 |
+
if len(file_list) > 4:
|
422 |
+
return file_list[:4]
|
423 |
+
return file_list
|
424 |
+
|
425 |
+
with batch_section:
|
426 |
+
gr.Markdown("### Batch Processing (Up to 4 Images)")
|
427 |
+
with gr.Row():
|
428 |
+
with gr.Column():
|
429 |
+
images_input = gr.File(label="Upload 4 Images (up to 4)", file_count="multiple", type="filepath")
|
430 |
+
images_input.change(fn=limit_files, inputs=images_input, outputs=images_input)
|
431 |
+
offsets_input = gr.Textbox(label="Offsets (comma-separated, one per image)", placeholder="e.g. 0.1, 0.1")
|
432 |
+
offset_unit_batch = gr.Dropdown(label="Offset Unit", choices=["inches", "mm"], value="inches")
|
433 |
+
batch_submit_btn = gr.Button("Submit Batch")
|
434 |
+
batch_clear_btn = gr.Button("Clear Batch")
|
435 |
+
with gr.Column():
|
436 |
+
final_images_gallery = gr.Gallery(label="Final Annotated Images", columns=2)
|
437 |
+
outlines_gallery = gr.Gallery(label="Outlined Images", columns=2)
|
438 |
+
masks_gallery = gr.Gallery(label="Mask Images", columns=2)
|
439 |
+
dxf_zip_file = gr.File(label="DXF Files (zip)")
|
440 |
+
scale_factors_text = gr.JSON(label="Scale Factors (Key=Image Index)")
|
441 |
+
error_indices_txt = gr.Textbox(label="Error Indices (if any)", interactive=False)
|
442 |
+
batch_submit_btn.click(fn=batch_predict,
|
443 |
+
inputs=[images_input, offsets_input, offset_unit_batch],
|
444 |
+
outputs=[final_images_gallery, outlines_gallery, dxf_zip_file, masks_gallery, scale_factors_text, error_indices_txt])
|
445 |
+
batch_clear_btn.click(fn=lambda: ([], [], None, [], {}, ""),
|
446 |
+
inputs=[], outputs=[final_images_gallery, outlines_gallery, dxf_zip_file, masks_gallery, scale_factors_text, error_indices_txt])
|
447 |
+
|
448 |
+
#######################################################################
|
449 |
+
# Retry Faulty Image Section
|
450 |
+
#######################################################################
|
451 |
+
with retry_section:
|
452 |
+
gr.Markdown("### Retry Faulty Image")
|
453 |
+
with gr.Row():
|
454 |
+
with gr.Column():
|
455 |
+
retry_index = gr.Textbox(label="Index of Faulty Image (0-indexed)", placeholder="Enter index of failed image")
|
456 |
+
retry_image_input = gr.Image(label="Replacement Image")
|
457 |
+
retry_offset = gr.Number(label="Offset", value=0.075)
|
458 |
+
retry_offset_unit = gr.Dropdown(label="Offset Unit", choices=["inches", "mm"], value="inches")
|
459 |
+
current_zip = gr.Textbox(label="Current ZIP File Path", interactive=False)
|
460 |
+
current_scale = gr.JSON(label="Current Scale Factors", value={})
|
461 |
+
retry_btn = gr.Button("Retry Faulty Image")
|
462 |
+
with gr.Column():
|
463 |
+
retry_final_img = gr.Image(label="Updated Final Image")
|
464 |
+
retry_outline_img = gr.Image(label="Updated Outline Image")
|
465 |
+
retry_mask_img = gr.Image(label="Updated Mask Image")
|
466 |
+
updated_zip = gr.File(label="Updated ZIP File")
|
467 |
+
updated_scale = gr.JSON(label="Updated Scale Factors")
|
468 |
+
retry_error = gr.Textbox(label="Retry Error Message", interactive=False)
|
469 |
+
retry_btn.click(fn=retry_predict,
|
470 |
+
inputs=[retry_index, retry_image_input, retry_offset, retry_offset_unit, current_zip, current_scale],
|
471 |
+
outputs=[retry_final_img, retry_outline_img, retry_mask_img, current_zip, updated_zip, updated_scale, retry_error])
|
472 |
+
demo.launch(share=True)
|