Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import torch
|
2 |
import base64
|
3 |
-
import urllib.request
|
4 |
import numpy as np
|
5 |
from io import BytesIO
|
6 |
from PIL import Image, ImageEnhance
|
@@ -8,10 +7,12 @@ import gradio as gr
|
|
8 |
|
9 |
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
|
10 |
from ultralytics import YOLO
|
11 |
-
from
|
|
|
12 |
from olmocr.prompts import build_finetuning_prompt
|
13 |
from olmocr.prompts.anchor import get_anchor_text
|
14 |
|
|
|
15 |
# Load the OCR model and processor once
|
16 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
ocr_model = Qwen2VLForConditionalGeneration.from_pretrained(
|
@@ -24,55 +25,88 @@ yolo_model = YOLO("best.pt")
|
|
24 |
|
25 |
def process_image(input_image):
|
26 |
"""
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
33 |
"""
|
34 |
-
# Step 1: Enhance the
|
35 |
enhanced_image = ImageEnhance.Sharpness(input_image).enhance(2.0)
|
36 |
enhanced_image = ImageEnhance.Contrast(enhanced_image).enhance(1.5)
|
37 |
enhanced_image = ImageEnhance.Brightness(enhanced_image).enhance(0.8)
|
38 |
|
39 |
-
# Step 2: Run YOLO detection with confidence threshold = 0.85
|
40 |
image_np = np.array(enhanced_image)
|
41 |
results = yolo_model.predict(source=image_np, conf=0.85)
|
42 |
result = results[0]
|
43 |
|
|
|
44 |
if len(result.boxes) == 0:
|
45 |
return enhanced_image, "No document detected by YOLO."
|
46 |
|
47 |
-
# Select the detection with the highest confidence
|
48 |
boxes = result.boxes
|
49 |
-
confidences = boxes.conf.cpu().numpy()
|
50 |
best_index = int(confidences.argmax())
|
51 |
best_box = boxes.xyxy[best_index].cpu().numpy().tolist() # [xmin, ymin, xmax, ymax]
|
52 |
xmin, ymin, xmax, ymax = map(int, best_box)
|
53 |
|
54 |
-
#
|
55 |
-
|
56 |
-
|
57 |
-
cropped_image.thumbnail(max_size, Image.LANCZOS)
|
58 |
|
59 |
-
# Step 4:
|
60 |
-
|
61 |
-
sample_pdf_path = "./paper.pdf"
|
62 |
-
urllib.request.urlretrieve(sample_pdf_url, sample_pdf_path)
|
63 |
|
64 |
-
#
|
65 |
-
|
|
|
|
|
66 |
|
67 |
-
#
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
# Step 5:
|
72 |
buffered = BytesIO()
|
73 |
cropped_image.save(buffered, format="PNG")
|
74 |
cropped_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
messages = [
|
77 |
{
|
78 |
"role": "user",
|
@@ -86,7 +120,7 @@ def process_image(input_image):
|
|
86 |
messages, tokenize=False, add_generation_prompt=True
|
87 |
)
|
88 |
|
89 |
-
#
|
90 |
inputs = ocr_processor(
|
91 |
text=[text_prompt],
|
92 |
images=[cropped_image],
|
@@ -95,20 +129,43 @@ def process_image(input_image):
|
|
95 |
)
|
96 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
prompt_length = inputs["input_ids"].shape[1]
|
107 |
new_tokens = output[:, prompt_length:]
|
108 |
text_output = ocr_processor.tokenizer.batch_decode(new_tokens, skip_special_tokens=True)
|
109 |
extracted_text = text_output[0]
|
110 |
|
111 |
-
# Step 7: Return the cropped image and
|
112 |
return cropped_image, extracted_text
|
113 |
|
114 |
# Define the Gradio Interface
|
@@ -121,10 +178,10 @@ iface = gr.Interface(
|
|
121 |
],
|
122 |
title="Document OCR with YOLO and OLMOCR",
|
123 |
description=(
|
124 |
-
"Upload an image of a document. The app enhances the image,
|
125 |
-
"then builds an OCR prompt from a sample PDF and extracts text."
|
126 |
),
|
127 |
-
allow_flagging="never"
|
128 |
)
|
129 |
|
|
|
130 |
iface.launch(share=True)
|
|
|
1 |
import torch
|
2 |
import base64
|
|
|
3 |
import numpy as np
|
4 |
from io import BytesIO
|
5 |
from PIL import Image, ImageEnhance
|
|
|
7 |
|
8 |
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
|
9 |
from ultralytics import YOLO
|
10 |
+
from prompts import front, back # prompts.py should define front and back as multiline strings
|
11 |
+
|
12 |
from olmocr.prompts import build_finetuning_prompt
|
13 |
from olmocr.prompts.anchor import get_anchor_text
|
14 |
|
15 |
+
|
16 |
# Load the OCR model and processor once
|
17 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
ocr_model = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
|
25 |
|
26 |
def process_image(input_image):
|
27 |
"""
|
28 |
+
1. Preprocess the input image.
|
29 |
+
2. Run YOLO detection with a confidence threshold of 0.85.
|
30 |
+
3. Crop the image according to the detected bounding box.
|
31 |
+
4. Choose the corresponding prompt from prompts.py based on the label.
|
32 |
+
5. Convert the cropped image to base64 and build the OCR prompt.
|
33 |
+
6. Run the OCR model to extract text.
|
34 |
+
7. Return the cropped (preprocessed) image and the extracted text.
|
35 |
"""
|
36 |
+
# Step 1: Enhance the image (sharpness, contrast, brightness)
|
37 |
enhanced_image = ImageEnhance.Sharpness(input_image).enhance(2.0)
|
38 |
enhanced_image = ImageEnhance.Contrast(enhanced_image).enhance(1.5)
|
39 |
enhanced_image = ImageEnhance.Brightness(enhanced_image).enhance(0.8)
|
40 |
|
41 |
+
# Step 2: Run YOLO detection using ultralytics with confidence threshold = 0.85
|
42 |
image_np = np.array(enhanced_image)
|
43 |
results = yolo_model.predict(source=image_np, conf=0.85)
|
44 |
result = results[0]
|
45 |
|
46 |
+
# If no boxes detected, return the enhanced image with an error message.
|
47 |
if len(result.boxes) == 0:
|
48 |
return enhanced_image, "No document detected by YOLO."
|
49 |
|
50 |
+
# Step 3: Select the detection with the highest confidence
|
51 |
boxes = result.boxes
|
52 |
+
confidences = boxes.conf.cpu().numpy() # convert tensor to numpy array
|
53 |
best_index = int(confidences.argmax())
|
54 |
best_box = boxes.xyxy[best_index].cpu().numpy().tolist() # [xmin, ymin, xmax, ymax]
|
55 |
xmin, ymin, xmax, ymax = map(int, best_box)
|
56 |
|
57 |
+
# Retrieve the detected label using the model's names mapping
|
58 |
+
class_idx = int(boxes.cls[best_index].item())
|
59 |
+
label = yolo_model.names[class_idx]
|
|
|
60 |
|
61 |
+
# Step 4: Crop the image using the bounding box
|
62 |
+
cropped_image = enhanced_image.crop((xmin, ymin, xmax, ymax))
|
|
|
|
|
63 |
|
64 |
+
# OPTIMIZATION: Resize the image to reduce processing time
|
65 |
+
# Calculate aspect ratio to maintain proportions
|
66 |
+
max_size = (640, 640) # Further reduced from 800x800
|
67 |
+
cropped_image.thumbnail(max_size, Image.LANCZOS)
|
68 |
|
69 |
+
# # Select the corresponding OCR prompt based on the YOLO label
|
70 |
+
# if label.lower() == "front":
|
71 |
+
# doc_prompt = front
|
72 |
+
# elif label.lower() == "back":
|
73 |
+
# doc_prompt = back
|
74 |
+
# else:
|
75 |
+
# doc_prompt = front # Default to front if unexpected label
|
76 |
|
77 |
+
# Step 5: Convert cropped image to base64 for the message
|
78 |
buffered = BytesIO()
|
79 |
cropped_image.save(buffered, format="PNG")
|
80 |
cropped_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
81 |
|
82 |
+
# # Build the message in the expected format for the OCR processor
|
83 |
+
# messages = [
|
84 |
+
# {
|
85 |
+
# "role": "user",
|
86 |
+
# "content": [
|
87 |
+
# {"type": "text", "text": doc_prompt},
|
88 |
+
# {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{cropped_base64}"}},
|
89 |
+
# ],
|
90 |
+
# }
|
91 |
+
# ]
|
92 |
+
# text_prompt = ocr_processor.apply_chat_template(
|
93 |
+
# messages, tokenize=False, add_generation_prompt=True
|
94 |
+
# )
|
95 |
+
|
96 |
+
# # Step 6: Prepare inputs and run the OCR model
|
97 |
+
# inputs = ocr_processor(
|
98 |
+
# text=[text_prompt],
|
99 |
+
# images=[cropped_image],
|
100 |
+
# padding=True,
|
101 |
+
# return_tensors="pt",
|
102 |
+
# )
|
103 |
+
# inputs = {k: v.to(device) for k, v in inputs.items()}
|
104 |
+
|
105 |
+
|
106 |
+
anchor_text = extract_anchor_text_from_image(cropped_image) # You'll need to implement this
|
107 |
+
prompt = build_finetuning_prompt(anchor_text)
|
108 |
+
|
109 |
+
# Build the message in the expected format for the OCR processor
|
110 |
messages = [
|
111 |
{
|
112 |
"role": "user",
|
|
|
120 |
messages, tokenize=False, add_generation_prompt=True
|
121 |
)
|
122 |
|
123 |
+
# Rest of your code for processing with OCR
|
124 |
inputs = ocr_processor(
|
125 |
text=[text_prompt],
|
126 |
images=[cropped_image],
|
|
|
129 |
)
|
130 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
131 |
|
132 |
+
# FIXED: Generation parameters with proper combinations to avoid warnings
|
133 |
+
# Choose one of these two approaches:
|
134 |
+
|
135 |
+
# Approach 1: Greedy decoding (fastest)
|
136 |
+
# output = ocr_model.generate(
|
137 |
+
# **inputs,
|
138 |
+
# max_new_tokens=40,
|
139 |
+
# num_beams=1,
|
140 |
+
# do_sample=False # Greedy decoding
|
141 |
+
# )
|
142 |
+
|
143 |
+
output = model.generate(
|
144 |
+
**inputs,
|
145 |
+
temperature=0.2,
|
146 |
+
max_new_tokens=50,
|
147 |
+
num_return_sequences=1,
|
148 |
+
do_sample=True,
|
149 |
+
)
|
150 |
+
|
151 |
+
# Uncomment this block and comment the above if you want sampling instead
|
152 |
+
# # Approach 2: Sampling (more natural but slower)
|
153 |
+
# output = ocr_model.generate(
|
154 |
+
# **inputs,
|
155 |
+
# max_new_tokens=40,
|
156 |
+
# do_sample=True,
|
157 |
+
# temperature=0.2,
|
158 |
+
# top_p=0.95,
|
159 |
+
# top_k=50,
|
160 |
+
# num_return_sequences=1
|
161 |
+
# )
|
162 |
|
163 |
prompt_length = inputs["input_ids"].shape[1]
|
164 |
new_tokens = output[:, prompt_length:]
|
165 |
text_output = ocr_processor.tokenizer.batch_decode(new_tokens, skip_special_tokens=True)
|
166 |
extracted_text = text_output[0]
|
167 |
|
168 |
+
# Step 7: Return the cropped (preprocessed) image and extracted text
|
169 |
return cropped_image, extracted_text
|
170 |
|
171 |
# Define the Gradio Interface
|
|
|
178 |
],
|
179 |
title="Document OCR with YOLO and OLMOCR",
|
180 |
description=(
|
181 |
+
"Upload an image of a document. The app enhances the image, then extracts text using an OCR model."
|
|
|
182 |
),
|
183 |
+
allow_flagging="never" # Disable flagging to simplify UI
|
184 |
)
|
185 |
|
186 |
+
# Enable queue and sharing for Hugging Face Space
|
187 |
iface.launch(share=True)
|