ammariii08's picture
Added required files
2c0d085 verified
import gradio as gr
import cv2
from ultralytics import YOLO
# Load YOLO model
model = YOLO('last.torchscript') # Replace with 'best.onnx' or 'best.torchscript' if converted
# Function for image inference
def detect_in_image(image):
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
results = model.predict(source=image, save=False, save_txt=False)
annotated_frame = results[0].plot() # Annotated frame with bounding boxes
annotated_frame = cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB) # Convert to RGB
return annotated_frame
# Function for video inference
def detect_in_video(video):
cap = cv2.VideoCapture(video)
output_path = "output_video.mp4"
# Get video properties
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)
# Create VideoWriter for saving the output video
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))
# Frame generator for live streaming
def frame_generator(frame_skip=6):
frame_count = 0
while True:
ret, frame = cap.read()
if not ret:
break
if frame_count % frame_skip == 0: # Process every nth frame
results = model.predict(source=frame, save=False, save_txt=False)
annotated_frame = results[0].plot() # Annotated frame with bounding boxes
# Save annotated frame to output video
out.write(annotated_frame)
# Convert frame to RGB for display
annotated_frame_rgb = cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB)
yield annotated_frame_rgb
frame_count += 1
# Release resources
cap.release()
out.release()
return frame_generator(), output_path
# Build the Gradio interface
with gr.Blocks(css=".header {font-size: 30px; color: #4CAF50; font-weight: bold; text-align: center;} .image-output {max-width: 400px; margin: auto;}") as app:
gr.Markdown("<h1 class='header'>🐾 Rat Paw Detection App 🐾</h1>")
# Image detection tab
with gr.Tab("Image Detection"):
image_input = gr.Image(label="Upload an Image", type="numpy")
image_output = gr.Image(label="Annotated Image", type="numpy", elem_id="image-output")
image_button = gr.Button("Detect", variant="primary")
image_button.click(detect_in_image, inputs=image_input, outputs=image_output)
# Video detection tab
with gr.Tab("Video Detection"):
video_input = gr.Video(label="Upload a Video")
video_display = gr.Image(label="Live Detection", elem_id="image-output")
def video_handler(video):
frame_gen, output_path = detect_in_video(video)
for frame in frame_gen:
yield {video_display: frame} # Live update for each processed frame
video_button = gr.Button("Detect", variant="primary")
video_button.click(fn=video_handler, inputs=video_input, outputs=[video_display])
# Launch the app
app.launch()