Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,139 @@
|
|
1 |
import streamlit as st
|
2 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
# Title and description
|
5 |
st.title("Document Processing App")
|
6 |
st.write("Upload a PDF, Excel, Word, PNG, JPG, or JPEG file to process it.")
|
7 |
|
8 |
-
# Define the path for the new folder
|
9 |
-
folder_path = "/workspace/olmocr/new_folder"
|
10 |
-
|
11 |
-
# Create the folder if it doesn't exist
|
12 |
-
if not os.path.exists(folder_path):
|
13 |
-
os.makedirs(folder_path)
|
14 |
-
st.write(f"Folder created: {folder_path}")
|
15 |
-
else:
|
16 |
-
st.write(f"Folder already exists: {folder_path}")
|
17 |
-
|
18 |
# File uploader
|
19 |
uploaded_file = st.sidebar.file_uploader("Choose a file", type=["pdf", "xls", "xlsx", "doc", "docx", "png", "jpg", "jpeg"])
|
20 |
|
21 |
if uploaded_file is not None:
|
22 |
-
#
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import base64
|
4 |
+
from io import BytesIO
|
5 |
+
from PIL import Image
|
6 |
+
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
|
7 |
+
from olmocr.data.renderpdf import render_pdf_to_base64png
|
8 |
+
from olmocr.prompts import build_finetuning_prompt
|
9 |
+
from olmocr.prompts.anchor import get_anchor_text
|
10 |
+
|
11 |
+
# Initialize the model
|
12 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained("allenai/olmOCR-7B-0225-preview", torch_dtype=torch.bfloat16).eval()
|
13 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
|
14 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
+
model.to(device)
|
16 |
+
|
17 |
+
# Set the font
|
18 |
+
st.markdown(
|
19 |
+
"""
|
20 |
+
<style>
|
21 |
+
@import url('https://fonts.googleapis.com/css2?family=Tw+Cen+MT&display=swap');
|
22 |
+
body {
|
23 |
+
font-family: 'Tw Cen MT', sans-serif;
|
24 |
+
}
|
25 |
+
</style>
|
26 |
+
""",
|
27 |
+
unsafe_allow_html=True,
|
28 |
+
)
|
29 |
|
30 |
# Title and description
|
31 |
st.title("Document Processing App")
|
32 |
st.write("Upload a PDF, Excel, Word, PNG, JPG, or JPEG file to process it.")
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
# File uploader
|
35 |
uploaded_file = st.sidebar.file_uploader("Choose a file", type=["pdf", "xls", "xlsx", "doc", "docx", "png", "jpg", "jpeg"])
|
36 |
|
37 |
if uploaded_file is not None:
|
38 |
+
# Process the uploaded file
|
39 |
+
if uploaded_file.type == "application/pdf":
|
40 |
+
# Render page 1 to an image
|
41 |
+
image_base64 = render_pdf_to_base64png(uploaded_file, 1, target_longest_image_dim=1024)
|
42 |
+
|
43 |
+
# Build the prompt, using document metadata
|
44 |
+
anchor_text = get_anchor_text(uploaded_file, 1, pdf_engine="pdfreport", target_length=4000)
|
45 |
+
prompt = build_finetuning_prompt(anchor_text)
|
46 |
+
|
47 |
+
# Build the full prompt
|
48 |
+
messages = [
|
49 |
+
{
|
50 |
+
"role": "user",
|
51 |
+
"content": [
|
52 |
+
{"type": "text", "text": prompt},
|
53 |
+
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}},
|
54 |
+
],
|
55 |
+
}
|
56 |
+
]
|
57 |
+
|
58 |
+
# Apply the chat template and processor
|
59 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
60 |
+
main_image = Image.open(BytesIO(base64.b64decode(image_base64)))
|
61 |
+
inputs = processor(
|
62 |
+
text=[text],
|
63 |
+
images=[main_image],
|
64 |
+
padding=True,
|
65 |
+
return_tensors="pt",
|
66 |
+
)
|
67 |
+
inputs = {key: value.to(device) for (key, value) in inputs.items()}
|
68 |
+
|
69 |
+
# Generate the output
|
70 |
+
output = model.generate(
|
71 |
+
**inputs,
|
72 |
+
temperature=0.8,
|
73 |
+
max_new_tokens=50,
|
74 |
+
num_return_sequences=1,
|
75 |
+
do_sample=True,
|
76 |
+
)
|
77 |
+
|
78 |
+
# Decode the output
|
79 |
+
prompt_length = inputs["input_ids"].shape[1]
|
80 |
+
new_tokens = output[:, prompt_length:]
|
81 |
+
text_output = processor.tokenizer.batch_decode(
|
82 |
+
new_tokens, skip_special_tokens=True
|
83 |
+
)
|
84 |
+
|
85 |
+
# Display the result
|
86 |
+
st.write("Processed Text:")
|
87 |
+
st.write(text_output)
|
88 |
+
|
89 |
+
elif uploaded_file.type in ["image/png", "image/jpeg"]:
|
90 |
+
# Load the image
|
91 |
+
image = Image.open(uploaded_file)
|
92 |
+
image_base64 = base64.b64encode(image.tobytes()).decode('utf-8')
|
93 |
+
|
94 |
+
# Build the prompt
|
95 |
+
prompt = "Please describe the content of the image."
|
96 |
+
|
97 |
+
# Build the full prompt
|
98 |
+
messages = [
|
99 |
+
{
|
100 |
+
"role": "user",
|
101 |
+
"content": [
|
102 |
+
{"type": "text", "text": prompt},
|
103 |
+
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}},
|
104 |
+
],
|
105 |
+
}
|
106 |
+
]
|
107 |
+
|
108 |
+
# Apply the chat template and processor
|
109 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
110 |
+
inputs = processor(
|
111 |
+
text=[text],
|
112 |
+
images=[image],
|
113 |
+
padding=True,
|
114 |
+
return_tensors="pt",
|
115 |
+
)
|
116 |
+
inputs = {key: value.to(device) for (key, value) in inputs.items()}
|
117 |
+
|
118 |
+
# Generate the output
|
119 |
+
output = model.generate(
|
120 |
+
**inputs,
|
121 |
+
temperature=0.8,
|
122 |
+
max_new_tokens=50,
|
123 |
+
num_return_sequences=1,
|
124 |
+
do_sample=True,
|
125 |
+
)
|
126 |
+
|
127 |
+
# Decode the output
|
128 |
+
prompt_length = inputs["input_ids"].shape[1]
|
129 |
+
new_tokens = output[:, prompt_length:]
|
130 |
+
text_output = processor.tokenizer.batch_decode(
|
131 |
+
new_tokens, skip_special_tokens=True
|
132 |
+
)
|
133 |
+
|
134 |
+
# Display the result
|
135 |
+
st.write("Processed Text:")
|
136 |
+
st.write(text_output)
|
137 |
|
138 |
+
else:
|
139 |
+
st.write("Unsupported file type.")
|