Spaces:
Running
Running
Revert app.py to non ZeroGPU
Browse files
app.py
CHANGED
@@ -2,33 +2,23 @@ import gradio as gr
|
|
2 |
from transformers import GPT2LMHeadModel, AutoTokenizer, pipeline
|
3 |
import torch
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
return pipeline(
|
19 |
-
"text-generation",
|
20 |
-
model=model,
|
21 |
-
tokenizer=tokenizer,
|
22 |
-
device_map="auto",
|
23 |
-
config={"max_length": 140}
|
24 |
-
)
|
25 |
-
|
26 |
-
# Initialize the pipeline
|
27 |
-
trump = create_model()
|
28 |
|
29 |
def generate(text):
|
30 |
result = trump(text, num_return_sequences=1)
|
31 |
-
return result[0]["generated_text"].replace('"', '')
|
32 |
|
33 |
examples = [
|
34 |
["Why does the lying news media"],
|
@@ -43,5 +33,4 @@ demo = gr.Interface(
|
|
43 |
examples=examples
|
44 |
)
|
45 |
|
46 |
-
|
47 |
-
demo.launch()
|
|
|
2 |
from transformers import GPT2LMHeadModel, AutoTokenizer, pipeline
|
3 |
import torch
|
4 |
|
5 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
6 |
+
|
7 |
+
# load pretrained + finetuned GPT2
|
8 |
+
model = GPT2LMHeadModel.from_pretrained("./model/gpt2-355M")
|
9 |
+
model = model.to(device)
|
10 |
+
|
11 |
+
# create tokenizer
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
13 |
+
"gpt2",
|
14 |
+
pad_token='<|endoftext|>'
|
15 |
+
)
|
16 |
+
|
17 |
+
trump = pipeline("text-generation", model=model, tokenizer=tokenizer, config={"max_length":140})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
def generate(text):
|
20 |
result = trump(text, num_return_sequences=1)
|
21 |
+
return result[0]["generated_text"].replace('"', '') # remove quotation marks
|
22 |
|
23 |
examples = [
|
24 |
["Why does the lying news media"],
|
|
|
33 |
examples=examples
|
34 |
)
|
35 |
|
36 |
+
demo.launch()
|
|