adeelshuaib commited on
Commit
8edf7ae
·
verified ·
1 Parent(s): f45cb95

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -15
app.py CHANGED
@@ -1,9 +1,12 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
 
4
- # Instantiate the client with the mental health model or any suitable model.
 
 
5
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
6
 
 
7
  def respond(
8
  message,
9
  history: list[tuple[str, str]],
@@ -12,22 +15,18 @@ def respond(
12
  temperature,
13
  top_p,
14
  ):
15
- # Define the system message to guide the assistant's behavior
16
  messages = [{"role": "system", "content": system_message}]
17
 
18
- # Add history of conversation to maintain context
19
  for val in history:
20
  if val[0]:
21
  messages.append({"role": "user", "content": val[0]})
22
  if val[1]:
23
  messages.append({"role": "assistant", "content": val[1]})
24
 
25
- # Add the user's current message to the conversation context
26
  messages.append({"role": "user", "content": message})
27
 
28
  response = ""
29
 
30
- # Stream the response token by token
31
  for message in client.chat_completion(
32
  messages,
33
  max_tokens=max_tokens,
@@ -36,22 +35,18 @@ def respond(
36
  top_p=top_p,
37
  ):
38
  token = message.choices[0].delta.content
 
39
  response += token
40
  yield response
41
 
42
- # Customize the system message for mental health
43
- default_system_message = """
44
- You are a compassionate mental health specialist trained to listen empathetically and offer support.
45
- When engaging with users, make sure to respond with kindness and provide general emotional support.
46
- Avoid giving specific medical or clinical advice, but offer guidance, validate feelings, and suggest appropriate resources when needed.
47
- Encourage open conversations and create a safe, non-judgmental space for the user to share.
48
- """
49
 
50
- # Create the Gradio interface with additional parameters for user configuration
 
 
51
  demo = gr.ChatInterface(
52
  respond,
53
  additional_inputs=[
54
- gr.Textbox(value=default_system_message, label="System Message (Mental Health Specialist)"),
55
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
56
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
57
  gr.Slider(
@@ -64,5 +59,6 @@ demo = gr.ChatInterface(
64
  ],
65
  )
66
 
 
67
  if __name__ == "__main__":
68
- demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
 
4
+ """
5
+ For more information on huggingface_hub Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
+ """
7
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
9
+
10
  def respond(
11
  message,
12
  history: list[tuple[str, str]],
 
15
  temperature,
16
  top_p,
17
  ):
 
18
  messages = [{"role": "system", "content": system_message}]
19
 
 
20
  for val in history:
21
  if val[0]:
22
  messages.append({"role": "user", "content": val[0]})
23
  if val[1]:
24
  messages.append({"role": "assistant", "content": val[1]})
25
 
 
26
  messages.append({"role": "user", "content": message})
27
 
28
  response = ""
29
 
 
30
  for message in client.chat_completion(
31
  messages,
32
  max_tokens=max_tokens,
 
35
  top_p=top_p,
36
  ):
37
  token = message.choices[0].delta.content
38
+
39
  response += token
40
  yield response
41
 
 
 
 
 
 
 
 
42
 
43
+ """
44
+ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
+ """
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
49
+ gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
  gr.Slider(
 
59
  ],
60
  )
61
 
62
+
63
  if __name__ == "__main__":
64
+ demo.launch()