import gradio as gr from transformers import TrOCRProcessor, VisionEncoderDecoderModel from PIL import Image import torch from torchvision import transforms import matplotlib.pyplot as plt # Load TrOCR model processor = TrOCRProcessor.from_pretrained("microsoft/trocr-large-handwritten") model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-large-handwritten") def preprocess_image(image): # Convert image to RGB image = image.convert("RGB") # Resize and normalize the image to [0, 1] transform = transforms.Compose([ transforms.Resize((384, 384)), # Resize to the expected input size transforms.ToTensor(), # Convert to tensor and scale to [0, 1] ]) pixel_values = transform(image).unsqueeze(0) # Add batch dimension return pixel_values def visualize_image(pixel_values): # Convert tensor to numpy array and permute dimensions for visualization image = pixel_values.squeeze().permute(1, 2, 0).numpy() plt.imshow(image) plt.title("Preprocessed Image") plt.show() def recognize_text(image): try: # Preprocess the image pixel_values = preprocess_image(image) print("Image preprocessed. Pixel values shape:", pixel_values.shape) # Visualize preprocessed image visualize_image(pixel_values) # Generate text from the image with torch.no_grad(): generated_ids = model.generate(pixel_values) print("Generated IDs:", generated_ids) # Decode the generated IDs to text text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] print("Decoded text:", text) return text except Exception as e: print(f"Error: {str(e)}") return f"Error: {str(e)}" # Gradio UI note = gr.Interface( fn=recognize_text, inputs=gr.Image(type="pil"), outputs="text", title="Handwritten Note to Digital Text", description="Upload an image of handwritten text, and the AI will convert it to digital text." ) note.launch()