Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers import TrOCRProcessor, VisionEncoderDecoderModel | |
from PIL import Image | |
import torch | |
import spaces | |
# Load TrOCR model | |
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-large-handwritten") | |
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-large-handwritten") | |
def recognize_text(image): | |
try: | |
# Convert image to RGB if it's not already | |
image = image.convert("RGB") | |
print("Image converted to RGB.") | |
# Preprocess the image | |
pixel_values = processor(images=image, return_tensors="pt").pixel_values | |
print("Image preprocessed. Pixel values shape:", pixel_values.shape) | |
# Generate text from the image | |
with torch.no_grad(): # Disable gradient calculation for inference | |
generated_ids = model.generate(pixel_values) | |
print("Generated IDs:", generated_ids) | |
# Decode the generated IDs to text | |
text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
print("Decoded text:", text) | |
return text | |
except Exception as e: | |
print(f"Error: {str(e)}") | |
return f"Error: {str(e)}" | |
# Gradio UI | |
note = gr.Interface( | |
fn=recognize_text, | |
inputs=gr.Image(type="pil"), | |
outputs="text", | |
title="Handwritten Note to Digital Text", | |
description="Upload an image of handwritten text, and the AI will convert it to digital text." | |
) | |
note.launch() |