note-to-text / app.py
ZennyKenny's picture
Update app.py
3fa52bd verified
raw
history blame
1.63 kB
import gradio as gr
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
from PIL import Image
import torch
import matplotlib.pyplot as plt
# Load TrOCR model
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-large-handwritten")
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-large-handwritten")
def recognize_text(image):
try:
# Convert image to RGB if it's not already
image = image.convert("RGB")
print("Image converted to RGB.")
# Preprocess the image
pixel_values = processor(images=image, return_tensors="pt").pixel_values
print("Image preprocessed. Pixel values shape:", pixel_values.shape)
# Visualize preprocessed image
plt.imshow(pixel_values.squeeze().permute(1, 2, 0))
plt.title("Preprocessed Image")
plt.show()
# Generate text from the image
with torch.no_grad(): # Disable gradient calculation for inference
generated_ids = model.generate(pixel_values)
print("Generated IDs:", generated_ids)
# Decode the generated IDs to text
text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
print("Decoded text:", text)
return text
except Exception as e:
print(f"Error: {str(e)}")
return f"Error: {str(e)}"
# Gradio UI
note = gr.Interface(
fn=recognize_text,
inputs=gr.Image(type="pil"),
outputs="text",
title="Handwritten Note to Digital Text",
description="Upload an image of handwritten text, and the AI will convert it to digital text."
)
note.launch()