import gradio as gr from transformers import pipeline import pandas as pd import spaces # Load dataset from datasets import load_dataset ds = load_dataset('ZennyKenny/demo_customer_nps') df = pd.DataFrame(ds['train']) # Initialize model pipeline from huggingface_hub import login import os # Login using the API key stored as an environment variable hf_api_key = os.getenv("API_KEY") login(token=hf_api_key) classifier = pipeline("text-classification", model="distilbert/distilbert-base-uncased-finetuned-sst-2-english") generator = pipeline("text2text-generation", model="google/flan-t5-base") # Function to classify customer comments @spaces.GPU def classify_comments(categories): global df # Ensure we're modifying the global DataFrame sentiments = [] assigned_categories = [] for comment in df['customer_comment']: # Classify sentiment sentiment = classifier(comment)[0]['label'] # Generate category category_str = ', '.join(categories) prompt = f"What category best describes this comment? '{comment}' Please answer using only the name of the category: {category_str}." category = generator(prompt, max_length=30)[0]['generated_text'] assigned_categories.append(category) sentiments.append(sentiment) df['comment_sentiment'] = sentiments df['comment_category'] = assigned_categories return df.to_html(index=False) # Return all fields with appended sentiment and category # Function to add a category def add_category(categories, new_category): if new_category.strip() != "" and len(categories) < 5: # Limit to 5 categories categories.append(new_category.strip()) return categories, "", f"**Categories:**\n" + "\n".join([f"- {cat}" for cat in categories]) # Function to reset categories def reset_categories(): return [], "**Categories:**\n- None" # Function to load data from uploaded CSV def load_data(file): global df # Ensure we're modifying the global DataFrame if file is not None: file.seek(0) # Reset file pointer if file.name.endswith('.csv'): custom_df = pd.read_csv(file, encoding='utf-8') else: return "Error: Uploaded file is not a CSV." # Check for required columns required_columns = ['customer_comment'] if not all(col in custom_df.columns for col in required_columns): return f"Error: Uploaded CSV must contain the following column: {', '.join(required_columns)}" df = custom_df return "Custom CSV loaded successfully!" else: return "No file uploaded." # Function to use template categories def use_template(): template_categories = ["Product Experience", "Customer Support", "Price of Service", "Other"] return template_categories, f"**Categories:**\n" + "\n".join([f"- {cat}" for cat in template_categories]) # Gradio Interface with gr.Blocks() as nps: # State to store categories categories = gr.State([]) # App title gr.Markdown("# Customer Comment Classifier") # Short explanation gr.Markdown(""" This app classifies customer comments into categories and assigns sentiment labels (Positive/Negative). You can upload your own dataset or use the provided template. The app will append the generated `comment_sentiment` and `comment_category` fields to your dataset. """) # File upload and instructions with gr.Row(): with gr.Column(scale=1): uploaded_file = gr.File(label="Upload CSV", type="filepath", scale=1) with gr.Column(scale=1): gr.Markdown(""" **Instructions:** - Upload a CSV file with at least one column: `customer_comment`. - If you don't have your own data, click **Use Template** to load a sample dataset. """) template_btn = gr.Button("Use Template", size="sm") gr.Markdown("---") # Category section with gr.Row(): with gr.Column(scale=1): # Category input and buttons category_input = gr.Textbox(label="New Category", placeholder="Enter category name", scale=1) with gr.Row(): add_category_btn = gr.Button("Add Category", size="sm") reset_btn = gr.Button("Reset Categories", size="sm") # Category display category_status = gr.Markdown("**Categories:**\n- None") with gr.Column(scale=1): gr.Markdown(""" **Instructions:** - Enter a category name and click **Add Category** to add it to the list. - Click **Reset Categories** to clear the list. - The `customer_comment` field will be categorized based on the categories you provide. """) gr.Markdown("---") with gr.Column(scale=1): classify_btn = gr.Button("Classify", size="sm") with gr.Row(): with gr.Column(scale=3): # Center the container and make it 75% of the window width output = gr.HTML() # Event handlers add_category_btn.click( fn=add_category, inputs=[categories, category_input], outputs=[categories, category_input, category_status] ) reset_btn.click( fn=reset_categories, outputs=[categories, category_status] ) uploaded_file.change( fn=load_data, inputs=uploaded_file, outputs=output ) template_btn.click( fn=use_template, outputs=[categories, category_status] ) classify_btn.click( fn=classify_comments, inputs=categories, outputs=output ) nps.launch(share=True)