import gradio as gr
from transformers import pipeline
import pandas as pd
import spaces
import plotly.express as px
# Load dataset
from datasets import load_dataset
ds = load_dataset('ZennyKenny/demo_customer_nps')
df = pd.DataFrame(ds['train'])
# Initialize model pipeline
from huggingface_hub import login
import os
# Login using the API key stored as an environment variable
hf_api_key = os.getenv("API_KEY")
login(token=hf_api_key)
classifier = pipeline("text-classification", model="distilbert/distilbert-base-uncased-finetuned-sst-2-english")
generator = pipeline("text2text-generation", model="google/flan-t5-base")
# Function to classify customer comments
@spaces.GPU
def classify_comments(categories):
global df # Ensure we're modifying the global DataFrame
sentiments = []
assigned_categories = []
for comment in df['customer_comment']:
# Classify sentiment
sentiment = classifier(comment)[0]['label']
# Generate category
category_str = ', '.join(categories)
prompt = f"What category best describes this comment? '{comment}' Please answer using only the name of the category: {category_str}."
category = generator(prompt, max_length=30)[0]['generated_text']
assigned_categories.append(category)
sentiments.append(sentiment)
df['comment_sentiment'] = sentiments
df['comment_category'] = assigned_categories
return df[['customer_id', 'customer_comment', 'comment_sentiment', 'comment_category', 'customer_nps', 'customer_segment']].to_html(index=False)
# Function to generate visualizations
def visualize_output():
# Ensure the required columns exist
if 'comment_sentiment' not in df.columns or 'comment_category' not in df.columns:
# Return 5 values (None for plots and an error message for markdown)
return None, None, None, "Error: Please classify comments before visualizing.", None
# Pie Chart of Sentiment
sentiment_counts = df['comment_sentiment'].value_counts()
sentiment_pie = px.pie(
values=sentiment_counts.values,
names=sentiment_counts.index,
title="Sentiment Distribution",
hover_data=[sentiment_counts.values],
labels={'value': 'Count', 'names': 'Sentiment'}
)
sentiment_pie.update_traces(textinfo='percent+label', hovertemplate="Sentiment: %{label}
Count: %{value}
Percentage: %{percent}")
# Pie Chart of Comment Categories
category_counts = df['comment_category'].value_counts()
category_pie = px.pie(
values=category_counts.values,
names=category_counts.index,
title="Comment Category Distribution",
hover_data=[category_counts.values],
labels={'value': 'Count', 'names': 'Category'}
)
category_pie.update_traces(textinfo='percent+label', hovertemplate="Category: %{label}
Count: %{value}
Percentage: %{percent}")
# Stacked Bar Chart of Sentiment by Category
sentiment_by_category = df.groupby(['comment_category', 'comment_sentiment']).size().unstack()
stacked_bar = px.bar(
sentiment_by_category,
barmode='stack',
title="Sentiment by Comment Category",
labels={'value': 'Count', 'comment_category': 'Category', 'comment_sentiment': 'Sentiment'}
)
# KPI Visualizations
avg_nps = df['customer_nps'].mean()
avg_nps_positive = df[df['comment_sentiment'] == 'POSITIVE']['customer_nps'].mean()
avg_nps_negative = df[df['comment_sentiment'] == 'NEGATIVE']['customer_nps'].mean()
avg_nps_by_category = df.groupby('comment_category')['customer_nps'].mean().reset_index()
avg_nps_by_segment = df.groupby('customer_segment')['customer_nps'].mean().reset_index()
kpi_visualization = f"""
**Average NPS Scores:**
- Overall: {avg_nps:.2f}
- Positive Sentiment: {avg_nps_positive:.2f}
- Negative Sentiment: {avg_nps_negative:.2f}
**Average NPS by Category:**
{avg_nps_by_category.to_markdown(index=False)}
**Average NPS by Segment:**
{avg_nps_by_segment.to_markdown(index=False)}
"""
# Pie Chart of Sentiment by Customer Segment
sentiment_by_segment = df.groupby(['customer_segment', 'comment_sentiment']).size().unstack()
sentiment_by_segment_pie = px.pie(
sentiment_by_segment,
title="Sentiment by Customer Segment",
labels={'value': 'Count', 'customer_segment': 'Segment', 'comment_sentiment': 'Sentiment'}
)
return sentiment_pie, category_pie, stacked_bar, kpi_visualization, sentiment_by_segment_pie
# Gradio Interface
with gr.Blocks() as nps:
# State to store categories
categories = gr.State([])
# Function to add a category
def add_category(categories, new_category):
if new_category.strip() != "" and len(categories) < 5: # Limit to 5 categories
categories.append(new_category.strip())
return categories, "", f"**Categories:**\n" + "\n".join([f"- {cat}" for cat in categories])
# Function to reset categories
def reset_categories():
return [], "**Categories:**\n- None"
# UI for adding categories
with gr.Row():
category_input = gr.Textbox(label="New Category", placeholder="Enter category name")
add_category_btn = gr.Button("Add Category")
reset_btn = gr.Button("Reset Categories")
category_status = gr.Markdown("**Categories:**\n- None")
# File upload and template buttons
uploaded_file = gr.File(label="Upload CSV", type="filepath")
template_btn = gr.Button("Use Template")
gr.Markdown("# NPS Comment Categorization")
# Classify button
classify_btn = gr.Button("Classify Comments")
output = gr.HTML()
# Visualize button
visualize_btn = gr.Button("Visualize Output")
sentiment_pie = gr.Plot(label="Sentiment Distribution")
category_pie = gr.Plot(label="Comment Category Distribution")
stacked_bar = gr.Plot(label="Sentiment by Comment Category")
kpi_visualization = gr.Markdown()
sentiment_by_segment_pie = gr.Plot(label="Sentiment by Customer Segment")
# Function to load data from uploaded CSV
def load_data(file):
global df # Ensure we're modifying the global DataFrame
if file is not None:
file.seek(0) # Reset file pointer
if file.name.endswith('.csv'):
custom_df = pd.read_csv(file, encoding='utf-8')
else:
return "Error: Uploaded file is not a CSV."
# Check for required columns
required_columns = ['customer_id', 'customer_comment', 'customer_nps', 'customer_segment']
if not all(col in custom_df.columns for col in required_columns):
return f"Error: Uploaded CSV must contain the following columns: {', '.join(required_columns)}"
df = custom_df
return "Custom CSV loaded successfully!"
else:
return "No file uploaded."
# Function to use template categories
def use_template():
template_categories = ["Product Experience", "Customer Support", "Price of Service", "Other"]
return template_categories, f"**Categories:**\n" + "\n".join([f"- {cat}" for cat in template_categories])
# Event handlers
add_category_btn.click(
fn=add_category,
inputs=[categories, category_input],
outputs=[categories, category_input, category_status]
)
reset_btn.click(
fn=reset_categories,
outputs=[categories, category_status]
)
uploaded_file.change(
fn=load_data,
inputs=uploaded_file,
outputs=output
)
template_btn.click(
fn=use_template,
outputs=[categories, category_status]
)
classify_btn.click(
fn=classify_comments,
inputs=categories,
outputs=output
)
visualize_btn.click(
fn=visualize_output,
outputs=[sentiment_pie, category_pie, stacked_bar, kpi_visualization, sentiment_by_segment_pie]
)
nps.launch(share=True)