import gradio as gr from transformers import pipeline import pandas as pd import spaces # Load dataset from datasets import load_dataset ds = load_dataset('ZennyKenny/demo_customer_nps') df = pd.DataFrame(ds['train']) # Initialize model pipeline from huggingface_hub import login import os # Login using the API key stored as an environment variable hf_api_key = os.getenv("API_KEY") login(token=hf_api_key) classifier = pipeline("text-classification", model="distilbert/distilbert-base-uncased-finetuned-sst-2-english") generator = pipeline("text2text-generation", model="google/flan-t5-base") # Function to classify customer comments @spaces.GPU def classify_comments(category_boxes): sentiments = [] categories = [] for comment in df['customer_comment']: sentiment = classifier(comment)[0]['label'] category_list = [box for box in category_boxes if box.strip() != ''] category_str = ', '.join([cat.strip() for cat in category_list]) prompt = f"What category best describes this comment? '{comment}' Please answer using only the name of the category: {category_str}." category = generator(prompt, max_length=30)[0]['generated_text'] categories.append(category) sentiments.append(sentiment) df['comment_sentiment'] = sentiments df['comment_category'] = categories return df[['customer_comment', 'comment_sentiment', 'comment_category']].to_html(index=False) # Gradio Interface with gr.Blocks() as nps: def add_category(category_list, new_category): if new_category.strip() != "": category_list.append(new_category.strip()) # Add new category return category_list def remove_category(category, category_list): category_list.remove(category) # Remove selected category return category_list def display_categories(categories): category_components = [] for i, cat in enumerate(categories): with gr.Row(): gr.Markdown(f"- {cat}") remove_btn = gr.Button("X", elem_id=f"remove_{i}", interactive=True) remove_btn.click( fn=lambda x=cat: remove_category(x, categories), inputs=[], outputs=category_boxes ) category_components.append(gr.Row()) return category_components category_boxes = gr.State([]) # Store category input boxes as state category_column = gr.Column() with gr.Row(): category_input = gr.Textbox(label="New Category", placeholder="Enter category name") add_category_btn = gr.Button("Add Category") add_category_btn.click( fn=add_category, inputs=[category_boxes, category_input], outputs=category_boxes ) category_boxes.change( fn=display_categories, inputs=category_boxes, outputs=category_column ) uploaded_file = gr.File(label="Upload CSV", type="filepath") template_btn = gr.Button("Use Template") gr.Markdown("# NPS Comment Categorization") classify_btn = gr.Button("Classify Comments") output = gr.HTML() def load_data(file): if file is not None: file.seek(0) # Reset file pointer import io if file.name.endswith('.csv'): custom_df = pd.read_csv(file, encoding='utf-8') else: return "Error: Uploaded file is not a CSV." if 'customer_comment' not in custom_df.columns: return "Error: Uploaded CSV must contain a column named 'customer_comment'" global df df = custom_df return "Custom CSV loaded successfully!" else: return "No file uploaded." uploaded_file.change(fn=load_data, inputs=uploaded_file, outputs=output) template_btn.click(fn=lambda: "Using Template Dataset", outputs=output) def use_template(): return ["Product Experience", "Customer Support", "Price of Service", "Other"] template_btn.click(fn=use_template, outputs=category_boxes) category_boxes.change(fn=display_categories, inputs=category_boxes, outputs=category_column) classify_btn.click(fn=classify_comments, inputs=category_boxes, outputs=output) nps.launch(share=True)