import gradio as gr from transformers import pipeline import pandas as pd import spaces # Load dataset from datasets import load_dataset ds = load_dataset('ZennyKenny/demo_customer_nps') df = pd.DataFrame(ds['train']) # Initialize model pipeline from huggingface_hub import login import os # Login using the API key stored as an environment variable hf_api_key = os.getenv("API_KEY") login(token=hf_api_key) classifier = pipeline("text-classification", model="distilbert/distilbert-base-uncased-finetuned-sst-2-english") generator = pipeline("text2text-generation", model="google/flan-t5-base") # Function to classify customer comments # https://huggingface.co/docs/hub/spaces-zerogpu @spaces.GPU def classify_comments(): sentiments = [] categories = [] results = [] for comment in df['customer_comment']: # Classify the sentiment first sentiment = classifier(comment)[0]['label'] prompt = f"What category best describes this comment? '{comment}' Please answer using only the name of the category: Product Experience, Customer Support, Price of Service, Other." category = generator(prompt, max_length=30)[0]['generated_text'] categories.append(category) sentiments.append(sentiment) df['comment_sentiment'] = sentiments df['comment_category'] = categories return df[['customer_comment', 'comment_sentiment', 'comment_category']].to_html(index=False) # Gradio Interface with gr.Blocks() as nps: gr.Markdown("# NPS Comment Categorization") classify_btn = gr.Button("Classify Comments") output = gr.HTML() classify_btn.click(fn=classify_comments, outputs=output) nps.launch()