Spaces:
Running
on
Zero
Running
on
Zero
remove visualizations for now
Browse files
app.py
CHANGED
@@ -2,7 +2,6 @@ import gradio as gr
|
|
2 |
from transformers import pipeline
|
3 |
import pandas as pd
|
4 |
import spaces
|
5 |
-
import plotly.express as px
|
6 |
|
7 |
# Load dataset
|
8 |
from datasets import load_dataset
|
@@ -39,40 +38,6 @@ def classify_comments(categories):
|
|
39 |
df['comment_category'] = assigned_categories
|
40 |
return df[['customer_id', 'customer_comment', 'comment_sentiment', 'comment_category', 'customer_nps', 'customer_segment']].to_html(index=False)
|
41 |
|
42 |
-
def visualize_output():
|
43 |
-
# Ensure the required columns exist
|
44 |
-
if 'comment_sentiment' not in df.columns or 'comment_category' not in df.columns:
|
45 |
-
return None, "Error: Please classify comments before visualizing."
|
46 |
-
|
47 |
-
try:
|
48 |
-
# Bar Chart of Sentiment by Category
|
49 |
-
sentiment_by_category = df.groupby(['comment_category', 'comment_sentiment']).size().unstack()
|
50 |
-
print("Sentiment by Category:")
|
51 |
-
print(sentiment_by_category)
|
52 |
-
bar_chart = px.bar(
|
53 |
-
sentiment_by_category,
|
54 |
-
barmode='stack',
|
55 |
-
title="Sentiment by Comment Category",
|
56 |
-
labels={'value': 'Count', 'comment_category': 'Category', 'comment_sentiment': 'Sentiment'}
|
57 |
-
)
|
58 |
-
|
59 |
-
# KPI Visualizations
|
60 |
-
avg_nps = df['customer_nps'].mean()
|
61 |
-
avg_nps_by_segment = df.groupby('customer_segment')['customer_nps'].mean().reset_index()
|
62 |
-
|
63 |
-
kpi_visualization = f"""
|
64 |
-
**Average NPS Scores:**
|
65 |
-
- Overall: {avg_nps:.2f}
|
66 |
-
**Average NPS by Segment:**
|
67 |
-
{avg_nps_by_segment.to_markdown(index=False)}
|
68 |
-
"""
|
69 |
-
|
70 |
-
return bar_chart, kpi_visualization
|
71 |
-
|
72 |
-
except Exception as e:
|
73 |
-
print(f"Error in visualize_output: {e}")
|
74 |
-
return None, f"Error: {str(e)}"
|
75 |
-
|
76 |
# Gradio Interface
|
77 |
with gr.Blocks() as nps:
|
78 |
# State to store categories
|
@@ -104,14 +69,6 @@ with gr.Blocks() as nps:
|
|
104 |
classify_btn = gr.Button("Classify Comments")
|
105 |
output = gr.HTML()
|
106 |
|
107 |
-
# Visualize button
|
108 |
-
visualize_btn = gr.Button("Visualize Output")
|
109 |
-
sentiment_pie = gr.Plot(label="Sentiment Distribution")
|
110 |
-
category_pie = gr.Plot(label="Comment Category Distribution")
|
111 |
-
stacked_bar = gr.Plot(label="Sentiment by Comment Category")
|
112 |
-
kpi_visualization = gr.Markdown()
|
113 |
-
sentiment_by_segment_pie = gr.Plot(label="Sentiment by Customer Segment")
|
114 |
-
|
115 |
# Function to load data from uploaded CSV
|
116 |
def load_data(file):
|
117 |
global df # Ensure we're modifying the global DataFrame
|
@@ -159,9 +116,5 @@ with gr.Blocks() as nps:
|
|
159 |
inputs=categories,
|
160 |
outputs=output
|
161 |
)
|
162 |
-
visualize_btn.click(
|
163 |
-
fn=visualize_output,
|
164 |
-
outputs=[sentiment_pie, category_pie, stacked_bar, kpi_visualization, sentiment_by_segment_pie]
|
165 |
-
)
|
166 |
|
167 |
nps.launch(share=True)
|
|
|
2 |
from transformers import pipeline
|
3 |
import pandas as pd
|
4 |
import spaces
|
|
|
5 |
|
6 |
# Load dataset
|
7 |
from datasets import load_dataset
|
|
|
38 |
df['comment_category'] = assigned_categories
|
39 |
return df[['customer_id', 'customer_comment', 'comment_sentiment', 'comment_category', 'customer_nps', 'customer_segment']].to_html(index=False)
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
# Gradio Interface
|
42 |
with gr.Blocks() as nps:
|
43 |
# State to store categories
|
|
|
69 |
classify_btn = gr.Button("Classify Comments")
|
70 |
output = gr.HTML()
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
# Function to load data from uploaded CSV
|
73 |
def load_data(file):
|
74 |
global df # Ensure we're modifying the global DataFrame
|
|
|
116 |
inputs=categories,
|
117 |
outputs=output
|
118 |
)
|
|
|
|
|
|
|
|
|
119 |
|
120 |
nps.launch(share=True)
|