ZennyKenny commited on
Commit
8d2cc8a
Β·
verified Β·
1 Parent(s): ec6871c
Files changed (1) hide show
  1. app.py +74 -45
app.py CHANGED
@@ -26,10 +26,6 @@ def classify_comments(categories):
26
  global df # Ensure we're modifying the global DataFrame
27
  sentiments = []
28
  assigned_categories = []
29
-
30
- # Debugging output
31
- print("Classifying comments...")
32
-
33
  for comment in df['customer_comment']:
34
  # Classify sentiment
35
  sentiment = classifier(comment)[0]['label']
@@ -39,60 +35,38 @@ def classify_comments(categories):
39
  category = generator(prompt, max_length=30)[0]['generated_text']
40
  assigned_categories.append(category)
41
  sentiments.append(sentiment)
42
-
43
  df['comment_sentiment'] = sentiments
44
  df['comment_category'] = assigned_categories
45
-
46
- # Debugging output
47
- print(df.head())
48
- print(df['comment_sentiment'].value_counts())
49
- print(df['comment_category'].value_counts())
50
-
51
  return df[['customer_id', 'customer_comment', 'comment_sentiment', 'comment_category', 'customer_nps', 'customer_segment']].to_html(index=False)
52
 
53
  # Function to generate visualizations
54
- @spaces.GPU
55
  def visualize_output():
56
- global df
57
-
58
- # Check if DataFrame is empty
59
- if df.empty:
60
- return None, None, None, "Error: DataFrame is empty. Please check the data or classification step.", None
61
-
62
- # Check for required columns
63
- required_columns = ['comment_sentiment', 'comment_category', 'customer_nps', 'customer_segment']
64
- if not all(col in df.columns for col in required_columns):
65
- return None, None, None, "Error: Required columns are missing. Please classify comments first.", None
66
-
67
- # Explicitly convert data types
68
- df['comment_sentiment'] = df['comment_sentiment'].astype(str)
69
- df['comment_category'] = df['comment_category'].astype(str)
70
- df['customer_nps'] = pd.to_numeric(df['customer_nps'], errors='coerce')
71
- df['customer_segment'] = df['customer_segment'].astype(str)
72
-
73
- # Drop NaN values
74
- df = df.dropna(subset=['comment_sentiment', 'comment_category', 'customer_nps', 'customer_segment'])
75
-
76
- # Debugging output
77
- print(df.head())
78
- print(df['comment_sentiment'].value_counts())
79
- print(df['comment_category'].value_counts())
80
 
81
  # Pie Chart of Sentiment
82
  sentiment_counts = df['comment_sentiment'].value_counts()
83
  sentiment_pie = px.pie(
84
  values=sentiment_counts.values,
85
  names=sentiment_counts.index,
86
- title="Sentiment Distribution"
 
 
87
  )
 
88
 
89
  # Pie Chart of Comment Categories
90
  category_counts = df['comment_category'].value_counts()
91
  category_pie = px.pie(
92
  values=category_counts.values,
93
  names=category_counts.index,
94
- title="Comment Category Distribution"
 
 
95
  )
 
96
 
97
  # Stacked Bar Chart of Sentiment by Category
98
  sentiment_by_category = df.groupby(['comment_category', 'comment_sentiment']).size().unstack()
@@ -125,36 +99,44 @@ def visualize_output():
125
  sentiment_by_segment = df.groupby(['customer_segment', 'comment_sentiment']).size().unstack()
126
  sentiment_by_segment_pie = px.pie(
127
  sentiment_by_segment,
128
- title="Sentiment by Customer Segment"
 
129
  )
130
 
131
  return sentiment_pie, category_pie, stacked_bar, kpi_visualization, sentiment_by_segment_pie
132
 
133
  # Gradio Interface
134
  with gr.Blocks() as nps:
 
135
  categories = gr.State([])
136
 
 
137
  def add_category(categories, new_category):
138
- if new_category.strip() != "" and len(categories) < 5:
139
  categories.append(new_category.strip())
140
  return categories, "", f"**Categories:**\n" + "\n".join([f"- {cat}" for cat in categories])
141
 
 
142
  def reset_categories():
143
  return [], "**Categories:**\n- None"
144
 
 
145
  with gr.Row():
146
  category_input = gr.Textbox(label="New Category", placeholder="Enter category name")
147
  add_category_btn = gr.Button("Add Category")
148
  reset_btn = gr.Button("Reset Categories")
149
  category_status = gr.Markdown("**Categories:**\n- None")
150
 
 
151
  uploaded_file = gr.File(label="Upload CSV", type="filepath")
152
  template_btn = gr.Button("Use Template")
153
  gr.Markdown("# NPS Comment Categorization")
154
 
 
155
  classify_btn = gr.Button("Classify Comments")
156
  output = gr.HTML()
157
 
 
158
  visualize_btn = gr.Button("Visualize Output")
159
  sentiment_pie = gr.Plot(label="Sentiment Distribution")
160
  category_pie = gr.Plot(label="Comment Category Distribution")
@@ -162,9 +144,56 @@ with gr.Blocks() as nps:
162
  kpi_visualization = gr.Markdown()
163
  sentiment_by_segment_pie = gr.Plot(label="Sentiment by Customer Segment")
164
 
165
- add_category_btn.click(fn=add_category, inputs=[categories, category_input], outputs=[categories, category_input, category_status])
166
- reset_btn.click(fn=reset_categories, outputs=[categories, category_status])
167
- classify_btn.click(fn=classify_comments, inputs=categories, outputs=output)
168
- visualize_btn.click(fn=visualize_output, outputs=[sentiment_pie, category_pie, stacked_bar, kpi_visualization, sentiment_by_segment_pie])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
169
 
170
- nps.launch(share=True)
 
26
  global df # Ensure we're modifying the global DataFrame
27
  sentiments = []
28
  assigned_categories = []
 
 
 
 
29
  for comment in df['customer_comment']:
30
  # Classify sentiment
31
  sentiment = classifier(comment)[0]['label']
 
35
  category = generator(prompt, max_length=30)[0]['generated_text']
36
  assigned_categories.append(category)
37
  sentiments.append(sentiment)
 
38
  df['comment_sentiment'] = sentiments
39
  df['comment_category'] = assigned_categories
 
 
 
 
 
 
40
  return df[['customer_id', 'customer_comment', 'comment_sentiment', 'comment_category', 'customer_nps', 'customer_segment']].to_html(index=False)
41
 
42
  # Function to generate visualizations
 
43
  def visualize_output():
44
+ # Ensure the required columns exist
45
+ if 'comment_sentiment' not in df.columns or 'comment_category' not in df.columns:
46
+ # Return 5 values (None for plots and an error message for markdown)
47
+ return None, None, None, "Error: Please classify comments before visualizing.", None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
 
49
  # Pie Chart of Sentiment
50
  sentiment_counts = df['comment_sentiment'].value_counts()
51
  sentiment_pie = px.pie(
52
  values=sentiment_counts.values,
53
  names=sentiment_counts.index,
54
+ title="Sentiment Distribution",
55
+ hover_data=[sentiment_counts.values],
56
+ labels={'value': 'Count', 'names': 'Sentiment'}
57
  )
58
+ sentiment_pie.update_traces(textinfo='percent+label', hovertemplate="Sentiment: %{label}<br>Count: %{value}<br>Percentage: %{percent}")
59
 
60
  # Pie Chart of Comment Categories
61
  category_counts = df['comment_category'].value_counts()
62
  category_pie = px.pie(
63
  values=category_counts.values,
64
  names=category_counts.index,
65
+ title="Comment Category Distribution",
66
+ hover_data=[category_counts.values],
67
+ labels={'value': 'Count', 'names': 'Category'}
68
  )
69
+ category_pie.update_traces(textinfo='percent+label', hovertemplate="Category: %{label}<br>Count: %{value}<br>Percentage: %{percent}")
70
 
71
  # Stacked Bar Chart of Sentiment by Category
72
  sentiment_by_category = df.groupby(['comment_category', 'comment_sentiment']).size().unstack()
 
99
  sentiment_by_segment = df.groupby(['customer_segment', 'comment_sentiment']).size().unstack()
100
  sentiment_by_segment_pie = px.pie(
101
  sentiment_by_segment,
102
+ title="Sentiment by Customer Segment",
103
+ labels={'value': 'Count', 'customer_segment': 'Segment', 'comment_sentiment': 'Sentiment'}
104
  )
105
 
106
  return sentiment_pie, category_pie, stacked_bar, kpi_visualization, sentiment_by_segment_pie
107
 
108
  # Gradio Interface
109
  with gr.Blocks() as nps:
110
+ # State to store categories
111
  categories = gr.State([])
112
 
113
+ # Function to add a category
114
  def add_category(categories, new_category):
115
+ if new_category.strip() != "" and len(categories) < 5: # Limit to 5 categories
116
  categories.append(new_category.strip())
117
  return categories, "", f"**Categories:**\n" + "\n".join([f"- {cat}" for cat in categories])
118
 
119
+ # Function to reset categories
120
  def reset_categories():
121
  return [], "**Categories:**\n- None"
122
 
123
+ # UI for adding categories
124
  with gr.Row():
125
  category_input = gr.Textbox(label="New Category", placeholder="Enter category name")
126
  add_category_btn = gr.Button("Add Category")
127
  reset_btn = gr.Button("Reset Categories")
128
  category_status = gr.Markdown("**Categories:**\n- None")
129
 
130
+ # File upload and template buttons
131
  uploaded_file = gr.File(label="Upload CSV", type="filepath")
132
  template_btn = gr.Button("Use Template")
133
  gr.Markdown("# NPS Comment Categorization")
134
 
135
+ # Classify button
136
  classify_btn = gr.Button("Classify Comments")
137
  output = gr.HTML()
138
 
139
+ # Visualize button
140
  visualize_btn = gr.Button("Visualize Output")
141
  sentiment_pie = gr.Plot(label="Sentiment Distribution")
142
  category_pie = gr.Plot(label="Comment Category Distribution")
 
144
  kpi_visualization = gr.Markdown()
145
  sentiment_by_segment_pie = gr.Plot(label="Sentiment by Customer Segment")
146
 
147
+ # Function to load data from uploaded CSV
148
+ def load_data(file):
149
+ global df # Ensure we're modifying the global DataFrame
150
+ if file is not None:
151
+ file.seek(0) # Reset file pointer
152
+ if file.name.endswith('.csv'):
153
+ custom_df = pd.read_csv(file, encoding='utf-8')
154
+ else:
155
+ return "Error: Uploaded file is not a CSV."
156
+ # Check for required columns
157
+ required_columns = ['customer_id', 'customer_comment', 'customer_nps', 'customer_segment']
158
+ if not all(col in custom_df.columns for col in required_columns):
159
+ return f"Error: Uploaded CSV must contain the following columns: {', '.join(required_columns)}"
160
+ df = custom_df
161
+ return "Custom CSV loaded successfully!"
162
+ else:
163
+ return "No file uploaded."
164
+
165
+ # Function to use template categories
166
+ def use_template():
167
+ template_categories = ["Product Experience", "Customer Support", "Price of Service", "Other"]
168
+ return template_categories, f"**Categories:**\n" + "\n".join([f"- {cat}" for cat in template_categories])
169
+
170
+ # Event handlers
171
+ add_category_btn.click(
172
+ fn=add_category,
173
+ inputs=[categories, category_input],
174
+ outputs=[categories, category_input, category_status]
175
+ )
176
+ reset_btn.click(
177
+ fn=reset_categories,
178
+ outputs=[categories, category_status]
179
+ )
180
+ uploaded_file.change(
181
+ fn=load_data,
182
+ inputs=uploaded_file,
183
+ outputs=output
184
+ )
185
+ template_btn.click(
186
+ fn=use_template,
187
+ outputs=[categories, category_status]
188
+ )
189
+ classify_btn.click(
190
+ fn=classify_comments,
191
+ inputs=categories,
192
+ outputs=output
193
+ )
194
+ visualize_btn.click(
195
+ fn=visualize_output,
196
+ outputs=[sentiment_pie, category_pie, stacked_bar, kpi_visualization, sentiment_by_segment_pie]
197
+ )
198
 
199
+ nps.launch(share=True)