ZennyKenny commited on
Commit
3b1d1cd
Β·
verified Β·
1 Parent(s): be8f9fe

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +44 -75
app.py CHANGED
@@ -21,11 +21,14 @@ classifier = pipeline("text-classification", model="distilbert/distilbert-base-u
21
  generator = pipeline("text2text-generation", model="google/flan-t5-base")
22
 
23
  # Function to classify customer comments
24
- @spaces.GPU
25
  def classify_comments(categories):
26
  global df # Ensure we're modifying the global DataFrame
27
  sentiments = []
28
  assigned_categories = []
 
 
 
 
29
  for comment in df['customer_comment']:
30
  # Classify sentiment
31
  sentiment = classifier(comment)[0]['label']
@@ -35,38 +38,59 @@ def classify_comments(categories):
35
  category = generator(prompt, max_length=30)[0]['generated_text']
36
  assigned_categories.append(category)
37
  sentiments.append(sentiment)
 
38
  df['comment_sentiment'] = sentiments
39
  df['comment_category'] = assigned_categories
 
 
 
 
 
 
40
  return df[['customer_id', 'customer_comment', 'comment_sentiment', 'comment_category', 'customer_nps', 'customer_segment']].to_html(index=False)
41
 
42
  # Function to generate visualizations
43
  def visualize_output():
44
- # Ensure the required columns exist
45
- if 'comment_sentiment' not in df.columns or 'comment_category' not in df.columns:
46
- # Return 5 values (None for plots and an error message for markdown)
47
- return None, None, None, "Error: Please classify comments before visualizing.", None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
 
49
  # Pie Chart of Sentiment
50
  sentiment_counts = df['comment_sentiment'].value_counts()
51
  sentiment_pie = px.pie(
52
  values=sentiment_counts.values,
53
  names=sentiment_counts.index,
54
- title="Sentiment Distribution",
55
- hover_data=[sentiment_counts.values],
56
- labels={'value': 'Count', 'names': 'Sentiment'}
57
  )
58
- sentiment_pie.update_traces(textinfo='percent+label', hovertemplate="Sentiment: %{label}<br>Count: %{value}<br>Percentage: %{percent}")
59
 
60
  # Pie Chart of Comment Categories
61
  category_counts = df['comment_category'].value_counts()
62
  category_pie = px.pie(
63
  values=category_counts.values,
64
  names=category_counts.index,
65
- title="Comment Category Distribution",
66
- hover_data=[category_counts.values],
67
- labels={'value': 'Count', 'names': 'Category'}
68
  )
69
- category_pie.update_traces(textinfo='percent+label', hovertemplate="Category: %{label}<br>Count: %{value}<br>Percentage: %{percent}")
70
 
71
  # Stacked Bar Chart of Sentiment by Category
72
  sentiment_by_category = df.groupby(['comment_category', 'comment_sentiment']).size().unstack()
@@ -99,44 +123,36 @@ def visualize_output():
99
  sentiment_by_segment = df.groupby(['customer_segment', 'comment_sentiment']).size().unstack()
100
  sentiment_by_segment_pie = px.pie(
101
  sentiment_by_segment,
102
- title="Sentiment by Customer Segment",
103
- labels={'value': 'Count', 'customer_segment': 'Segment', 'comment_sentiment': 'Sentiment'}
104
  )
105
 
106
  return sentiment_pie, category_pie, stacked_bar, kpi_visualization, sentiment_by_segment_pie
107
 
108
  # Gradio Interface
109
  with gr.Blocks() as nps:
110
- # State to store categories
111
  categories = gr.State([])
112
 
113
- # Function to add a category
114
  def add_category(categories, new_category):
115
- if new_category.strip() != "" and len(categories) < 5: # Limit to 5 categories
116
  categories.append(new_category.strip())
117
  return categories, "", f"**Categories:**\n" + "\n".join([f"- {cat}" for cat in categories])
118
 
119
- # Function to reset categories
120
  def reset_categories():
121
  return [], "**Categories:**\n- None"
122
 
123
- # UI for adding categories
124
  with gr.Row():
125
  category_input = gr.Textbox(label="New Category", placeholder="Enter category name")
126
  add_category_btn = gr.Button("Add Category")
127
  reset_btn = gr.Button("Reset Categories")
128
  category_status = gr.Markdown("**Categories:**\n- None")
129
 
130
- # File upload and template buttons
131
  uploaded_file = gr.File(label="Upload CSV", type="filepath")
132
  template_btn = gr.Button("Use Template")
133
  gr.Markdown("# NPS Comment Categorization")
134
 
135
- # Classify button
136
  classify_btn = gr.Button("Classify Comments")
137
  output = gr.HTML()
138
 
139
- # Visualize button
140
  visualize_btn = gr.Button("Visualize Output")
141
  sentiment_pie = gr.Plot(label="Sentiment Distribution")
142
  category_pie = gr.Plot(label="Comment Category Distribution")
@@ -144,56 +160,9 @@ with gr.Blocks() as nps:
144
  kpi_visualization = gr.Markdown()
145
  sentiment_by_segment_pie = gr.Plot(label="Sentiment by Customer Segment")
146
 
147
- # Function to load data from uploaded CSV
148
- def load_data(file):
149
- global df # Ensure we're modifying the global DataFrame
150
- if file is not None:
151
- file.seek(0) # Reset file pointer
152
- if file.name.endswith('.csv'):
153
- custom_df = pd.read_csv(file, encoding='utf-8')
154
- else:
155
- return "Error: Uploaded file is not a CSV."
156
- # Check for required columns
157
- required_columns = ['customer_id', 'customer_comment', 'customer_nps', 'customer_segment']
158
- if not all(col in custom_df.columns for col in required_columns):
159
- return f"Error: Uploaded CSV must contain the following columns: {', '.join(required_columns)}"
160
- df = custom_df
161
- return "Custom CSV loaded successfully!"
162
- else:
163
- return "No file uploaded."
164
-
165
- # Function to use template categories
166
- def use_template():
167
- template_categories = ["Product Experience", "Customer Support", "Price of Service", "Other"]
168
- return template_categories, f"**Categories:**\n" + "\n".join([f"- {cat}" for cat in template_categories])
169
-
170
- # Event handlers
171
- add_category_btn.click(
172
- fn=add_category,
173
- inputs=[categories, category_input],
174
- outputs=[categories, category_input, category_status]
175
- )
176
- reset_btn.click(
177
- fn=reset_categories,
178
- outputs=[categories, category_status]
179
- )
180
- uploaded_file.change(
181
- fn=load_data,
182
- inputs=uploaded_file,
183
- outputs=output
184
- )
185
- template_btn.click(
186
- fn=use_template,
187
- outputs=[categories, category_status]
188
- )
189
- classify_btn.click(
190
- fn=classify_comments,
191
- inputs=categories,
192
- outputs=output
193
- )
194
- visualize_btn.click(
195
- fn=visualize_output,
196
- outputs=[sentiment_pie, category_pie, stacked_bar, kpi_visualization, sentiment_by_segment_pie]
197
- )
198
 
199
- nps.launch(share=True)
 
21
  generator = pipeline("text2text-generation", model="google/flan-t5-base")
22
 
23
  # Function to classify customer comments
 
24
  def classify_comments(categories):
25
  global df # Ensure we're modifying the global DataFrame
26
  sentiments = []
27
  assigned_categories = []
28
+
29
+ # Debugging output
30
+ print("Classifying comments...")
31
+
32
  for comment in df['customer_comment']:
33
  # Classify sentiment
34
  sentiment = classifier(comment)[0]['label']
 
38
  category = generator(prompt, max_length=30)[0]['generated_text']
39
  assigned_categories.append(category)
40
  sentiments.append(sentiment)
41
+
42
  df['comment_sentiment'] = sentiments
43
  df['comment_category'] = assigned_categories
44
+
45
+ # Debugging output
46
+ print(df.head())
47
+ print(df['comment_sentiment'].value_counts())
48
+ print(df['comment_category'].value_counts())
49
+
50
  return df[['customer_id', 'customer_comment', 'comment_sentiment', 'comment_category', 'customer_nps', 'customer_segment']].to_html(index=False)
51
 
52
  # Function to generate visualizations
53
  def visualize_output():
54
+ global df
55
+
56
+ # Check if DataFrame is empty
57
+ if df.empty:
58
+ return None, None, None, "Error: DataFrame is empty. Please check the data or classification step.", None
59
+
60
+ # Check for required columns
61
+ required_columns = ['comment_sentiment', 'comment_category', 'customer_nps', 'customer_segment']
62
+ if not all(col in df.columns for col in required_columns):
63
+ return None, None, None, "Error: Required columns are missing. Please classify comments first.", None
64
+
65
+ # Explicitly convert data types
66
+ df['comment_sentiment'] = df['comment_sentiment'].astype(str)
67
+ df['comment_category'] = df['comment_category'].astype(str)
68
+ df['customer_nps'] = pd.to_numeric(df['customer_nps'], errors='coerce')
69
+ df['customer_segment'] = df['customer_segment'].astype(str)
70
+
71
+ # Drop NaN values
72
+ df = df.dropna(subset=['comment_sentiment', 'comment_category', 'customer_nps', 'customer_segment'])
73
+
74
+ # Debugging output
75
+ print(df.head())
76
+ print(df['comment_sentiment'].value_counts())
77
+ print(df['comment_category'].value_counts())
78
 
79
  # Pie Chart of Sentiment
80
  sentiment_counts = df['comment_sentiment'].value_counts()
81
  sentiment_pie = px.pie(
82
  values=sentiment_counts.values,
83
  names=sentiment_counts.index,
84
+ title="Sentiment Distribution"
 
 
85
  )
 
86
 
87
  # Pie Chart of Comment Categories
88
  category_counts = df['comment_category'].value_counts()
89
  category_pie = px.pie(
90
  values=category_counts.values,
91
  names=category_counts.index,
92
+ title="Comment Category Distribution"
 
 
93
  )
 
94
 
95
  # Stacked Bar Chart of Sentiment by Category
96
  sentiment_by_category = df.groupby(['comment_category', 'comment_sentiment']).size().unstack()
 
123
  sentiment_by_segment = df.groupby(['customer_segment', 'comment_sentiment']).size().unstack()
124
  sentiment_by_segment_pie = px.pie(
125
  sentiment_by_segment,
126
+ title="Sentiment by Customer Segment"
 
127
  )
128
 
129
  return sentiment_pie, category_pie, stacked_bar, kpi_visualization, sentiment_by_segment_pie
130
 
131
  # Gradio Interface
132
  with gr.Blocks() as nps:
 
133
  categories = gr.State([])
134
 
 
135
  def add_category(categories, new_category):
136
+ if new_category.strip() != "" and len(categories) < 5:
137
  categories.append(new_category.strip())
138
  return categories, "", f"**Categories:**\n" + "\n".join([f"- {cat}" for cat in categories])
139
 
 
140
  def reset_categories():
141
  return [], "**Categories:**\n- None"
142
 
 
143
  with gr.Row():
144
  category_input = gr.Textbox(label="New Category", placeholder="Enter category name")
145
  add_category_btn = gr.Button("Add Category")
146
  reset_btn = gr.Button("Reset Categories")
147
  category_status = gr.Markdown("**Categories:**\n- None")
148
 
 
149
  uploaded_file = gr.File(label="Upload CSV", type="filepath")
150
  template_btn = gr.Button("Use Template")
151
  gr.Markdown("# NPS Comment Categorization")
152
 
 
153
  classify_btn = gr.Button("Classify Comments")
154
  output = gr.HTML()
155
 
 
156
  visualize_btn = gr.Button("Visualize Output")
157
  sentiment_pie = gr.Plot(label="Sentiment Distribution")
158
  category_pie = gr.Plot(label="Comment Category Distribution")
 
160
  kpi_visualization = gr.Markdown()
161
  sentiment_by_segment_pie = gr.Plot(label="Sentiment by Customer Segment")
162
 
163
+ add_category_btn.click(fn=add_category, inputs=[categories, category_input], outputs=[categories, category_input, category_status])
164
+ reset_btn.click(fn=reset_categories, outputs=[categories, category_status])
165
+ classify_btn.click(fn=classify_comments, inputs=categories, outputs=output)
166
+ visualize_btn.click(fn=visualize_output, outputs=[sentiment_pie, category_pie, stacked_bar, kpi_visualization, sentiment_by_segment_pie])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167
 
168
+ nps.launch(share=True)