ZennyKenny's picture
remove css
1d62332 verified
import gradio as gr
from transformers import pipeline
import pandas as pd
import spaces
# Load dataset
from datasets import load_dataset
ds = load_dataset('ZennyKenny/demo_customer_nps')
df = pd.DataFrame(ds['train'])
# Initialize model pipeline
from huggingface_hub import login
import os
# Login using the API key stored as an environment variable
hf_api_key = os.getenv("API_KEY")
login(token=hf_api_key)
classifier = pipeline("text-classification", model="distilbert/distilbert-base-uncased-finetuned-sst-2-english")
generator = pipeline("text2text-generation", model="google/flan-t5-base")
# Function to classify customer comments
@spaces.GPU
def classify_comments(categories):
global df # Ensure we're modifying the global DataFrame
sentiments = []
assigned_categories = []
for comment in df['customer_comment']:
# Classify sentiment
sentiment = classifier(comment)[0]['label']
# Generate category
category_str = ', '.join(categories)
prompt = f"What category best describes this comment? '{comment}' Please answer using only the name of the category: {category_str}."
category = generator(prompt, max_length=30)[0]['generated_text']
assigned_categories.append(category)
sentiments.append(sentiment)
df['comment_sentiment'] = sentiments
df['comment_category'] = assigned_categories
return df.to_html(index=False) # Return all fields with appended sentiment and category
# Function to add a category
def add_category(categories, new_category):
if new_category.strip() != "" and len(categories) < 5: # Limit to 5 categories
categories.append(new_category.strip())
return categories, "", f"**Categories:**\n" + "\n".join([f"- {cat}" for cat in categories])
# Function to reset categories
def reset_categories():
return [], "**Categories:**\n- None"
# Function to load data from uploaded CSV
def load_data(file):
global df # Ensure we're modifying the global DataFrame
if file is not None:
file.seek(0) # Reset file pointer
if file.name.endswith('.csv'):
custom_df = pd.read_csv(file, encoding='utf-8')
else:
return "Error: Uploaded file is not a CSV."
# Check for required columns
required_columns = ['customer_comment']
if not all(col in custom_df.columns for col in required_columns):
return f"Error: Uploaded CSV must contain the following column: {', '.join(required_columns)}"
df = custom_df
return "Custom CSV loaded successfully!"
else:
return "No file uploaded."
# Function to use template categories
def use_template():
template_categories = ["Product Experience", "Customer Support", "Price of Service", "Other"]
return template_categories, f"**Categories:**\n" + "\n".join([f"- {cat}" for cat in template_categories])
# Gradio Interface
with gr.Blocks() as nps:
# State to store categories
categories = gr.State([])
# App title
gr.Markdown("# πŸŽ‰ Customer Comment Classifier πŸŽ‰")
# Short explanation
gr.Markdown("""
This app classifies customer comments into categories and assigns sentiment labels (Positive/Negative).
You can upload your own dataset or use the provided template. The app will append the generated
`comment_sentiment` and `comment_category` fields to your dataset.
""")
# File upload and instructions
with gr.Row():
with gr.Column(scale=1):
uploaded_file = gr.File(label="πŸ“‚ Upload CSV", type="filepath", scale=1)
with gr.Column(scale=1):
gr.Markdown("""
**πŸ“ Instructions:**
- Upload a CSV file with at least one column: `customer_comment`.
- If you don't have your own data, click **Use Template** to load a sample dataset.
""")
template_btn = gr.Button("✨ Use Template", size="sm")
gr.Markdown("---")
# Category section
with gr.Row():
with gr.Column(scale=1):
# Category input and buttons
category_input = gr.Textbox(label="πŸ“ New Category", placeholder="Enter category name", scale=1)
with gr.Row():
add_category_btn = gr.Button("βž• Add Category", size="sm")
reset_btn = gr.Button("πŸ”„ Reset Categories", size="sm")
# Category display
category_status = gr.Markdown("**πŸ“‚ Categories:**\n- None")
with gr.Column(scale=1):
gr.Markdown("""
**πŸ“ Instructions:**
- Enter a category name and click **Add Category** to add it to the list.
- Click **Reset Categories** to clear the list.
- The `customer_comment` field will be categorized based on the categories you provide.
""")
gr.Markdown("---")
# Classify button and output
with gr.Row():
with gr.Column(scale=1):
classify_btn = gr.Button("πŸ” Classify", size="sm")
with gr.Column(scale=3): # Center the container and make it 75% of the window width
output = gr.HTML()
# Event handlers
add_category_btn.click(
fn=add_category,
inputs=[categories, category_input],
outputs=[categories, category_input, category_status]
)
reset_btn.click(
fn=reset_categories,
outputs=[categories, category_status]
)
uploaded_file.change(
fn=load_data,
inputs=uploaded_file,
outputs=output
)
template_btn.click(
fn=use_template,
outputs=[categories, category_status]
)
classify_btn.click(
fn=classify_comments,
inputs=categories,
outputs=output
)
nps.launch(share=True)