ZennyKenny's picture
Update app.py
9d32e7a verified
raw
history blame
5.51 kB
import gradio as gr
from transformers import pipeline
import pandas as pd
import spaces
# Load dataset
from datasets import load_dataset
ds = load_dataset('ZennyKenny/demo_customer_nps')
df = pd.DataFrame(ds['train'])
# Initialize model pipeline
from huggingface_hub import login
import os
# Login using the API key stored as an environment variable
hf_api_key = os.getenv("API_KEY")
login(token=hf_api_key)
classifier = pipeline("text-classification", model="distilbert/distilbert-base-uncased-finetuned-sst-2-english")
generator = pipeline("text2text-generation", model="google/flan-t5-base")
# Function to classify customer comments
# https://huggingface.co/docs/hub/spaces-zerogpu
@spaces.GPU
def classify_comments():
sentiments = []
categories = []
results = []
for comment in df['customer_comment']:
sentiment = classifier(comment)[0]['label']
category_list = [box.value for box in category_boxes if box.value.strip() != '']
category_str = ', '.join([cat.strip() for cat in category_list])
prompt = f"What category best describes this comment? '{comment}' Please answer using only the name of the category: {category_str}."
category = generator(prompt, max_length=30)[0]['generated_text']
categories.append(category)
sentiments.append(sentiment)
df['comment_sentiment'] = sentiments
df['comment_category'] = categories
return df[['customer_comment', 'comment_sentiment', 'comment_category']].to_html(index=False)
# Gradio Interface
with gr.Blocks() as nps:
def add_category(category_list, new_category):
if new_category.strip() != "":
category_list.append(new_category.strip()) # Add new category
return category_list
category_boxes = gr.State([]) # Store category input boxes as state
def display_categories(categories):
category_column.clear() # Clear previous categories
for i, cat in enumerate(categories):
with category_column:
with gr.Row():
gr.Markdown(f"- {cat}")
remove_btn = gr.Button("X", elem_id=f"remove_{i}", interactive=True)
remove_btn.click(fn=lambda x=cat: remove_category(x, categories), inputs=[], outputs=category_boxes)
category_components = []
for i, cat in enumerate(categories):
with gr.Row():
gr.Markdown(f"- {cat}")
remove_btn = gr.Button("X", elem_id=f"remove_{i}", interactive=True)
remove_btn.click(fn=lambda x=cat: remove_category(x, categories), inputs=[], outputs=category_boxes)
return category_components
with gr.Row():
category_input = gr.Textbox(label="New Category", placeholder="Enter category name")
add_category_btn = gr.Button("Add Category")
def remove_category(category, category_list):
category_list.remove(category) # Remove selected category
return category_list
components = []
for i, cat in enumerate(categories):
row = gr.Row([
gr.Markdown(f"- {cat}"),
gr.Button("X", elem_id=f"remove_{i}", interactive=True).click(fn=lambda x=cat: remove_category(x, categories), inputs=[], outputs=category_boxes)
])
components.append(row)
return components
for i, cat in enumerate(categories):
row = gr.Row([
gr.Textbox(value=cat, label=f"Category {i+1}", interactive=True),
gr.Button("X", elem_id=f"remove_{i}")
])
components.append(row)
return components
category_column = gr.Row()
add_category_btn = gr.Button("Add Category")
add_category_btn.click(fn=add_category, inputs=[category_boxes, category_input], outputs=category_boxes)
category_boxes.change(fn=display_categories, inputs=category_boxes, outputs=category_column)
category_boxes.change(fn=display_categories, inputs=category_boxes, outputs=category_column)
uploaded_file = gr.File(label="Upload CSV", type="filepath")
template_btn = gr.Button("Use Template")
gr.Markdown("# NPS Comment Categorization")
classify_btn = gr.Button("Classify Comments")
output = gr.HTML()
def load_data(file):
if file is not None:
file.seek(0) # Reset file pointer
import io
if file.name.endswith('.csv'):
file.seek(0) # Reset file pointer
custom_df = pd.read_csv(file, encoding='utf-8')
custom_df = pd.read_csv(io.StringIO(content))
else:
return "Error: Uploaded file is not a CSV."
if 'customer_comment' not in custom_df.columns:
return "Error: Uploaded CSV must contain a column named 'customer_comment'"
global df
df = custom_df
return "Custom CSV loaded successfully!"
else:
return "No file uploaded."
uploaded_file.change(fn=load_data, inputs=uploaded_file, outputs=output)
template_btn.click(fn=lambda: "Using Template Dataset", outputs=output)
def use_template():
return ["Product Experience", "Customer Support", "Price of Service", "Other"]
template_btn.click(fn=use_template, outputs=category_boxes)
category_boxes.change(fn=display_categories, inputs=category_boxes, outputs=category_column)
classify_btn.click(fn=classify_comments, inputs=category_boxes, outputs=output)
nps.launch()