Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers import pipeline | |
import pandas as pd | |
import spaces | |
# Load dataset | |
from datasets import load_dataset | |
ds = load_dataset('ZennyKenny/demo_customer_nps') | |
df = pd.DataFrame(ds['train']) | |
# Initialize model pipeline | |
from huggingface_hub import login | |
import os | |
# Login using the API key stored as an environment variable | |
hf_api_key = os.getenv("API_KEY") | |
login(token=hf_api_key) | |
classifier = pipeline("text-classification", model="distilbert/distilbert-base-uncased-finetuned-sst-2-english") | |
generator = pipeline("text2text-generation", model="google/flan-t5-base") | |
# Function to classify customer comments | |
# https://huggingface.co/docs/hub/spaces-zerogpu | |
def classify_comments(): | |
sentiments = [] | |
categories = [] | |
results = [] | |
for comment in df['customer_comment']: | |
sentiment = classifier(comment)[0]['label'] | |
category_list = [box.value for box in category_boxes if box.value.strip() != ''] | |
category_str = ', '.join([cat.strip() for cat in category_list]) | |
prompt = f"What category best describes this comment? '{comment}' Please answer using only the name of the category: {category_str}." | |
category = generator(prompt, max_length=30)[0]['generated_text'] | |
categories.append(category) | |
sentiments.append(sentiment) | |
df['comment_sentiment'] = sentiments | |
df['comment_category'] = categories | |
return df[['customer_comment', 'comment_sentiment', 'comment_category']].to_html(index=False) | |
# Gradio Interface | |
with gr.Blocks() as nps: | |
def add_category(): | |
new_box = gr.Textbox(label="Category", placeholder="Enter a category") | |
category_boxes.append(new_box) | |
return new_box | |
add_category_btn.click(fn=add_category, outputs=category_boxes) | |
category_boxes = [] # Store category input boxes | |
add_category_btn = gr.Button("Add Category") | |
uploaded_file = gr.File(label="Upload CSV", type="filepath") | |
template_btn = gr.Button("Use Template") | |
gr.Markdown("# NPS Comment Categorization") | |
classify_btn = gr.Button("Classify Comments") | |
output = gr.HTML() | |
def load_data(file): | |
if file is not None: | |
file.seek(0) # Reset file pointer | |
import io | |
if file.name.endswith('.csv'): | |
file.seek(0) # Reset file pointer | |
custom_df = pd.read_csv(file, encoding='utf-8') | |
custom_df = pd.read_csv(io.StringIO(content)) | |
else: | |
return "Error: Uploaded file is not a CSV." | |
if 'customer_comment' not in custom_df.columns: | |
return "Error: Uploaded CSV must contain a column named 'customer_comment'" | |
global df | |
df = custom_df | |
return "Custom CSV loaded successfully!" | |
else: | |
return "No file uploaded." | |
uploaded_file.change(fn=load_data, inputs=uploaded_file, outputs=output) | |
template_btn.click(fn=lambda: "Using Template Dataset", outputs=output) | |
classify_btn.click(fn=classify_comments, inputs=[category_input], outputs=output) | |
nps.launch() | |