ZennyKenny's picture
support dynamic categories
9d03f28 verified
raw
history blame
3.1 kB
import gradio as gr
from transformers import pipeline
import pandas as pd
import spaces
# Load dataset
from datasets import load_dataset
ds = load_dataset('ZennyKenny/demo_customer_nps')
df = pd.DataFrame(ds['train'])
# Initialize model pipeline
from huggingface_hub import login
import os
# Login using the API key stored as an environment variable
hf_api_key = os.getenv("API_KEY")
login(token=hf_api_key)
classifier = pipeline("text-classification", model="distilbert/distilbert-base-uncased-finetuned-sst-2-english")
generator = pipeline("text2text-generation", model="google/flan-t5-base")
# Function to classify customer comments
# https://huggingface.co/docs/hub/spaces-zerogpu
@spaces.GPU
def classify_comments():
sentiments = []
categories = []
results = []
for comment in df['customer_comment']:
sentiment = classifier(comment)[0]['label']
category_list = [box.value for box in category_boxes if box.value.strip() != '']
category_str = ', '.join([cat.strip() for cat in category_list])
prompt = f"What category best describes this comment? '{comment}' Please answer using only the name of the category: {category_str}."
category = generator(prompt, max_length=30)[0]['generated_text']
categories.append(category)
sentiments.append(sentiment)
df['comment_sentiment'] = sentiments
df['comment_category'] = categories
return df[['customer_comment', 'comment_sentiment', 'comment_category']].to_html(index=False)
# Gradio Interface
with gr.Blocks() as nps:
def add_category():
new_box = gr.Textbox(label="Category", placeholder="Enter a category")
category_boxes.append(new_box)
return new_box
add_category_btn.click(fn=add_category, outputs=category_boxes)
category_boxes = [] # Store category input boxes
add_category_btn = gr.Button("Add Category")
uploaded_file = gr.File(label="Upload CSV", type="filepath")
template_btn = gr.Button("Use Template")
gr.Markdown("# NPS Comment Categorization")
classify_btn = gr.Button("Classify Comments")
output = gr.HTML()
def load_data(file):
if file is not None:
file.seek(0) # Reset file pointer
import io
if file.name.endswith('.csv'):
file.seek(0) # Reset file pointer
custom_df = pd.read_csv(file, encoding='utf-8')
custom_df = pd.read_csv(io.StringIO(content))
else:
return "Error: Uploaded file is not a CSV."
if 'customer_comment' not in custom_df.columns:
return "Error: Uploaded CSV must contain a column named 'customer_comment'"
global df
df = custom_df
return "Custom CSV loaded successfully!"
else:
return "No file uploaded."
uploaded_file.change(fn=load_data, inputs=uploaded_file, outputs=output)
template_btn.click(fn=lambda: "Using Template Dataset", outputs=output)
classify_btn.click(fn=classify_comments, inputs=[category_input], outputs=output)
nps.launch()