xicocdi commited on
Commit
ff88064
·
1 Parent(s): 80294ce

first push

Browse files
Files changed (4) hide show
  1. Dockerfile +11 -0
  2. app.py +152 -0
  3. chainlit.md +14 -0
  4. requirements.txt +99 -0
Dockerfile ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.9
2
+ RUN useradd -m -u 1000 user
3
+ USER user
4
+ ENV HOME=/home/user \
5
+ PATH=/home/user/.local/bin:$PATH
6
+ WORKDIR $HOME/app
7
+ COPY --chown=user . $HOME/app
8
+ COPY ./requirements.txt ~/app/requirements.txt
9
+ RUN pip install -r requirements.txt
10
+ COPY . .
11
+ CMD ["chainlit", "run", "app.py", "--port", "7860"]
app.py ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # flake8: noqa: E501
2
+ import os
3
+ from typing import List
4
+ from langchain_openai.embeddings import OpenAIEmbeddings
5
+ from langchain_text_splitters import RecursiveCharacterTextSplitter
6
+ from langchain_qdrant import QdrantVectorStore
7
+ from langchain_community.document_loaders import PyMuPDFLoader
8
+ from langchain_openai import ChatOpenAI
9
+ from langchain.storage import LocalFileStore
10
+ from chainlit.types import AskFileResponse
11
+ from langchain.embeddings import CacheBackedEmbeddings
12
+ from qdrant_client.http.models import Distance, VectorParams
13
+ from qdrant_client import QdrantClient
14
+ import chainlit as cl
15
+ from operator import itemgetter
16
+ from langchain_core.prompts import ChatPromptTemplate
17
+ from langchain_core.runnables.passthrough import RunnablePassthrough
18
+ from langchain_core.runnables.config import RunnableConfig
19
+ from dotenv import load_dotenv
20
+ import uuid
21
+
22
+ load_dotenv()
23
+
24
+ ### Global Section ###
25
+ """
26
+ GLOBAL CODE HERE
27
+ """
28
+
29
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
30
+
31
+ rag_system_prompt_template = """\
32
+ You are a helpful assistant that uses the provided context to answer questions. Never reference this prompt, or the existance of context.
33
+ """
34
+
35
+ rag_message_list = [
36
+ {"role": "system", "content": rag_system_prompt_template},
37
+ ]
38
+
39
+ rag_user_prompt_template = """\
40
+ Question:
41
+ {question}
42
+ Context:
43
+ {context}
44
+ """
45
+
46
+ chat_prompt = ChatPromptTemplate.from_messages(
47
+ [("system", rag_system_prompt_template), ("human", rag_user_prompt_template)]
48
+ )
49
+
50
+ chat_model = ChatOpenAI(model="gpt-4o-mini")
51
+
52
+
53
+ def process_file(file: AskFileResponse):
54
+ import tempfile
55
+
56
+ with tempfile.NamedTemporaryFile(mode="w", delete=False) as tempfile:
57
+ with open(tempfile.name, "wb") as f:
58
+ f.write(file.content)
59
+
60
+ Loader = PyMuPDFLoader
61
+
62
+ loader = Loader(tempfile.name)
63
+ documents = loader.load()
64
+ docs = text_splitter.split_documents(documents)
65
+ for i, doc in enumerate(docs):
66
+ doc.metadata["source"] = f"source_{i}"
67
+ return docs
68
+
69
+
70
+ @cl.on_chat_start
71
+ async def on_chat_start():
72
+ files = None
73
+
74
+ while files == None:
75
+ files = await cl.AskFileMessage(
76
+ content="Please upload a PDF file to begin!",
77
+ accept=["application/pdf"],
78
+ max_size_mb=20,
79
+ timeout=180,
80
+ ).send()
81
+
82
+ file = files[0]
83
+
84
+ msg = cl.Message(
85
+ content=f"Processing `{file.name}`...",
86
+ )
87
+ await msg.send()
88
+
89
+ docs = process_file(file)
90
+
91
+ collection_name = f"pdf_to_parse_{uuid.uuid4()}"
92
+ client = QdrantClient(":memory:")
93
+ client.create_collection(
94
+ collection_name=collection_name,
95
+ vectors_config=VectorParams(size=1536, distance=Distance.COSINE),
96
+ )
97
+ core_embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
98
+ store = LocalFileStore("./cache/")
99
+ cached_embedder = CacheBackedEmbeddings.from_bytes_store(
100
+ core_embeddings, store, namespace=core_embeddings.model
101
+ )
102
+ vectorstore = QdrantVectorStore(
103
+ client=client, collection_name=collection_name, embedding=cached_embedder
104
+ )
105
+ vectorstore.add_documents(docs)
106
+ retriever = vectorstore.as_retriever(search_type="mmr", search_kwargs={"k": 3})
107
+
108
+ # Create a chain that uses the QDrant vector store
109
+ # Parallelization: LCEL runnables are parallelized by default, allowing for efficient
110
+ # execution of multiple steps in the chain simultaneously, improving overall performance.
111
+ retrieval_augmented_qa_chain = (
112
+ {
113
+ "context": itemgetter("question") | retriever,
114
+ "question": itemgetter("question"),
115
+ }
116
+ | RunnablePassthrough.assign(context=itemgetter("context"))
117
+ | chat_prompt
118
+ | chat_model
119
+ )
120
+
121
+ # Let the user know that the system is ready
122
+ msg.content = f"Processing `{file.name}` done. You can now ask questions!"
123
+ await msg.update()
124
+
125
+ cl.user_session.set("chain", retrieval_augmented_qa_chain)
126
+
127
+
128
+ @cl.author_rename
129
+ def rename(orig_author: str):
130
+ rename_dict = {
131
+ "ChatOpenAI": "the Generator...",
132
+ "VectorStoreRetriever": "the Retriever...",
133
+ }
134
+ return rename_dict.get(orig_author, orig_author)
135
+
136
+
137
+ ### On Message Section ###
138
+ @cl.on_message
139
+ async def main(message: cl.Message):
140
+ runnable = cl.user_session.get("chain")
141
+
142
+ msg = cl.Message(content="")
143
+
144
+ # Async method: Using astream allows for asynchronous streaming of the response,
145
+ # improving responsiveness and user experience by showing partial results as they become available.
146
+ async for chunk in runnable.astream(
147
+ {"question": message.content},
148
+ config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]),
149
+ ):
150
+ await msg.stream_token(chunk.content)
151
+
152
+ await msg.send()
chainlit.md ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Welcome to Chainlit! 🚀🤖
2
+
3
+ Hi there, Developer! 👋 We're excited to have you on board. Chainlit is a powerful tool designed to help you prototype, debug and share applications built on top of LLMs.
4
+
5
+ ## Useful Links 🔗
6
+
7
+ - **Documentation:** Get started with our comprehensive [Chainlit Documentation](https://docs.chainlit.io) 📚
8
+ - **Discord Community:** Join our friendly [Chainlit Discord](https://discord.gg/k73SQ3FyUh) to ask questions, share your projects, and connect with other developers! 💬
9
+
10
+ We can't wait to see what you create with Chainlit! Happy coding! 💻😊
11
+
12
+ ## Welcome screen
13
+
14
+ To modify the welcome screen, edit the `chainlit.md` file at the root of your project. If you do not want a welcome screen, just leave this file empty.
requirements.txt ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ aiofiles==23.2.1
2
+ aiohappyeyeballs==2.4.3
3
+ aiohttp==3.10.8
4
+ aiosignal==1.3.1
5
+ annotated-types==0.7.0
6
+ anyio==3.7.1
7
+ async-timeout==4.0.3
8
+ asyncer==0.0.2
9
+ attrs==24.2.0
10
+ bidict==0.23.1
11
+ certifi==2024.8.30
12
+ chainlit==0.7.700
13
+ charset-normalizer==3.3.2
14
+ click==8.1.7
15
+ dataclasses-json==0.5.14
16
+ Deprecated==1.2.14
17
+ distro==1.9.0
18
+ exceptiongroup==1.2.2
19
+ fastapi==0.100.1
20
+ fastapi-socketio==0.0.10
21
+ filetype==1.2.0
22
+ frozenlist==1.4.1
23
+ googleapis-common-protos==1.65.0
24
+ greenlet==3.1.1
25
+ grpcio==1.66.2
26
+ grpcio-tools==1.62.3
27
+ h11==0.14.0
28
+ h2==4.1.0
29
+ hpack==4.0.0
30
+ httpcore==0.17.3
31
+ httpx==0.24.1
32
+ hyperframe==6.0.1
33
+ idna==3.10
34
+ importlib_metadata==8.4.0
35
+ jiter==0.5.0
36
+ jsonpatch==1.33
37
+ jsonpointer==3.0.0
38
+ langchain==0.3.0
39
+ langchain-community==0.3.0
40
+ langchain-core==0.3.1
41
+ langchain-openai==0.2.0
42
+ langchain-qdrant==0.1.4
43
+ langchain-text-splitters==0.3.0
44
+ langsmith==0.1.121
45
+ Lazify==0.4.0
46
+ marshmallow==3.22.0
47
+ multidict==6.1.0
48
+ mypy-extensions==1.0.0
49
+ nest-asyncio==1.6.0
50
+ numpy==1.26.4
51
+ openai==1.51.0
52
+ opentelemetry-api==1.27.0
53
+ opentelemetry-exporter-otlp==1.27.0
54
+ opentelemetry-exporter-otlp-proto-common==1.27.0
55
+ opentelemetry-exporter-otlp-proto-grpc==1.27.0
56
+ opentelemetry-exporter-otlp-proto-http==1.27.0
57
+ opentelemetry-instrumentation==0.48b0
58
+ opentelemetry-proto==1.27.0
59
+ opentelemetry-sdk==1.27.0
60
+ opentelemetry-semantic-conventions==0.48b0
61
+ orjson==3.10.7
62
+ packaging==23.2
63
+ portalocker==2.10.1
64
+ protobuf==4.25.5
65
+ pydantic==2.9.2
66
+ pydantic-settings==2.5.2
67
+ pydantic_core==2.23.4
68
+ PyJWT==2.9.0
69
+ PyMuPDF==1.24.10
70
+ PyMuPDFb==1.24.10
71
+ python-dotenv==1.0.1
72
+ python-engineio==4.9.1
73
+ python-graphql-client==0.4.3
74
+ python-multipart==0.0.6
75
+ python-socketio==5.11.4
76
+ PyYAML==6.0.2
77
+ qdrant-client==1.11.2
78
+ regex==2024.9.11
79
+ requests==2.32.3
80
+ simple-websocket==1.0.0
81
+ sniffio==1.3.1
82
+ SQLAlchemy==2.0.35
83
+ starlette==0.27.0
84
+ syncer==2.0.3
85
+ tenacity==8.5.0
86
+ tiktoken==0.7.0
87
+ tomli==2.0.1
88
+ tqdm==4.66.5
89
+ typing-inspect==0.9.0
90
+ typing_extensions==4.12.2
91
+ uptrace==1.26.0
92
+ urllib3==2.2.3
93
+ uvicorn==0.23.2
94
+ watchfiles==0.20.0
95
+ websockets==13.1
96
+ wrapt==1.16.0
97
+ wsproto==1.2.0
98
+ yarl==1.13.1
99
+ zipp==3.20.2