import os
import numpy as np
import random
import time
import gradio as gr
from runner import Runner
import matplotlib.pyplot as plt
def show_mask(mask, ax, color='blue'):
if color == 'blue':
# reference, blue
color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
else:
# target, green
color = np.array([78 / 255, 238 / 255, 148 / 255, 0.6])
# if random_color:
# color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
# else:
# color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_points(coords, labels, ax, marker_size=375):
pos_points = coords[labels == 1]
neg_points = coords[labels == 0]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white',
linewidth=1.25)
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white',
linewidth=1.25)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2))
def show_img_point_box_mask(img, input_point=None, input_label=None, box=None, masks=None, save_path=None, mode='mask', color='blue'):
if mode == 'point':
# point
plt.figure(figsize=(10, 10))
plt.imshow(img)
show_points(input_point, input_label, plt.gca())
plt.axis('on')
plt.savefig(save_path, bbox_inches='tight')
elif mode == 'box':
# box
plt.figure(figsize=(10, 10))
plt.imshow(img)
show_box(box, plt.gca())
plt.axis('on')
plt.savefig(save_path, bbox_inches='tight')
else:
# mask
plt.figure(figsize=(10, 10))
plt.imshow(img)
show_mask(masks, plt.gca(), color=color)
plt.axis('off')
plt.savefig(save_path, bbox_inches='tight')
plt.close()
def create_oss_demo(
runner: Runner,
pipe: None = None
) -> gr.Blocks:
examples = [
['./gradio_demo/images/horse1.png', './gradio_demo/images/horse2.png', './gradio_demo/images/horse3.png'],
['./gradio_demo/images/hmbb1.png', './gradio_demo/images/hmbb2.png', './gradio_demo/images/hmbb3.png'],
['./gradio_demo/images/earth1.png', './gradio_demo/images/earth2.png', './gradio_demo/images/earth3.png'],
['./gradio_demo/images/elephant1.png', './gradio_demo/images/elephant2.png', './gradio_demo/images/elephant3.png'],
['./gradio_demo/images/dinosaur1.png', './gradio_demo/images/dinosaur2.png', './gradio_demo/images/dinosaur3.png'],
]
with gr.Blocks() as oss_demo:
with gr.Column():
# inputs
with gr.Row():
img_input_prompt = gr.ImageMask(label='Prompt (提示图)')
img_input_target1 = gr.Image(label='Target 1 (测试图1)')
img_input_target2 = gr.Image(label='Target 2 (测试图2)')
version = gr.inputs.Radio(['version 1 (🔺 multiple instances 🔻 whole, 🔻 part)',
'version 2 (🔻 multiple instances 🔺 whole, 🔻 part)',
'version 3 (🔻 multiple instances 🔻 whole, 🔺 part)'],
type="value", default='version 1 (🔺 whole, 🔻 part)',
label='Multiple Instances (version 1), Single Instance (version 2), Part of a object (version 3)')
with gr.Row():
submit1 = gr.Button("提交 (Submit)")
clear = gr.Button("清除 (Clear)")
info = gr.Text(label="Processing result: ", interactive=False)
# decision
K = gr.Slider(0, 10, 10, step=1, label="Controllable mask output", interactive=True)
submit2 = gr.Button("提交 (Submit)")
# outputs
with gr.Row():
img_output_pmt = gr.Image(label='Prompt (提示图)')
img_output_tar1 = gr.Image(label='Output 1 (输出图1)')
img_output_tar2 = gr.Image(label='Output 2 (输出图2)')
# images
gr.Examples(
examples=examples,
fn=runner.inference_oss_ops,
inputs=[img_input_prompt, img_input_target1, img_input_target2],
outputs=info
)
submit1.click(
fn=runner.inference_oss_ops,
inputs=[img_input_prompt, img_input_target1, img_input_target2, version],
outputs=info
)
submit2.click(
fn=runner.controllable_mask_output,
inputs=K,
outputs=[img_output_pmt, img_output_tar1, img_output_tar2]
)
clear.click(
fn=runner.clear_fn,
inputs=None,
outputs=[img_input_prompt, img_input_target1, img_input_target2, info, img_output_pmt, img_output_tar1, img_output_tar2],
queue=False
)
return oss_demo
def create_vos_demo(
runner: Runner,
pipe: None = None
) -> gr.Interface:
raise NotImplementedError
def create_demo(
runner: Runner,
pipe: None = None
) -> gr.TabbedInterface:
title = "Matcher🎯: Segment Anything with One Shot Using All-Purpose Feature Matching
\