import gradio as gr import tensorflow as tf import joblib import pickle from tensorflow.keras.preprocessing.sequence import pad_sequences # Load your model and tokenizer model = tf.keras.models.load_model('lstm_model.h5') tokenizer = joblib.load('tokenizer.pkl') with open('padding_config.pkl', 'rb') as file: padding_config = pickle.load(file) # Preprocessing function def preprocess(text): tokenized_text = tokenizer.texts_to_sequences([text]) padded_text = pad_sequences(tokenized_text, **padding_config) return padded_text # Prediction function def predict(text): processed_text = preprocess(text) prediction = model.predict(processed_text) return prediction.tolist() # Gradio interface iface = gr.Interface(fn=predict, inputs="text", outputs="json") # Launch Gradio app iface.launch()