import torch from torch import nn import gradio as gr from torchvision.transforms import Resize, ToTensor, Compose from torch.nn.functional import softmax class myCNN(nn.Module): def __init__(self, input_channels, classes) -> None: super().__init__() self.layer1 = nn.Sequential(nn.Conv2d(in_channels=input_channels, out_channels=64, kernel_size=(3,3), padding='valid', bias=False), nn.BatchNorm2d(num_features=64), nn.ReLU()) self.layer2 = nn.Sequential(nn.Conv2d(in_channels=64, out_channels=64, kernel_size=(3,3), padding='valid', bias=False), nn.BatchNorm2d(num_features=64), nn.ReLU()) self.layer3 = nn.Sequential(nn.MaxPool2d((2,2)), nn.Dropout2d(0.4)) self.layer4 = nn.Sequential(nn.Conv2d(in_channels=64, out_channels=128, kernel_size=(3,3), padding='valid', bias=False), nn.BatchNorm2d(num_features=128), nn.ReLU()) self.layer5 = nn.Sequential(nn.Conv2d(in_channels=128, out_channels=128, kernel_size=(3,3), padding='valid', bias=False), nn.BatchNorm2d(num_features=128), nn.ReLU()) self.layer6 = nn.Sequential(nn.MaxPool2d((2,2)), nn.Dropout2d(0.4)) self.flat = nn.Flatten() self.fc1 = nn.Sequential(nn.Linear(3200, 512), nn.ReLU(), nn.Dropout1d(0.5)) self.fc2 = nn.Sequential(nn.Linear(512, 256), nn.ReLU()) self.fc3 = nn.Linear(256, classes) def forward(self, x): layer1 = self.layer1(x) layer2 = self.layer2(layer1) layer3 = self.layer3(layer2) layer4 = self.layer4(layer3) layer5 = self.layer5(layer4) layer6 = self.layer6(layer5) flat = self.flat(layer6) fc1 = self.fc1(flat) fc2 = self.fc2(fc1) fc3 = self.fc3(fc2) return fc3 device = 'gpu' if torch.cuda.is_available() else 'cpu' model_state = torch.load("myCNN_states.pt", map_location=device, weights_only=False) input_shape = model_state['input_shape'] cls_to_idx = model_state['labels_encoder'] idx_to_cls = {value:key for key,value in cls_to_idx.items()} pre_processor = Compose([Resize(input_shape[1:]), ToTensor()]) model = torch.load("myCNN.bin", map_location=device, weights_only=False) def post_processor(raw_output): softmax_output = softmax(raw_output, -1) values, indices = torch.max(softmax_output, -1) return idx_to_cls[indices.item()].capitalize(), round(values.item(), 2) @torch.no_grad def lunch(raw_input): input = pre_processor(raw_input) output = model(input.unsqueeze(0)) return post_processor(output) custom_css ='.gr-button {background-color: #bf4b04; color: white;}' with gr.Blocks(css=custom_css) as demo: with gr.Row(): with gr.Column(): input_image = gr.Image(type="pil", label='Input Image') gr.Text("Airplane, Automobile, Bird, Cat, Deer, Dog, Frog, Horse, Ship, Truck", label="Supported Classes:") with gr.Column(): class_name = gr.Textbox(label="This is (a\\an)") confidence = gr.Textbox(label='Confidence') start_btn = gr.Button(value='Submit', elem_classes=["gr-button"]) start_btn.click(fn=lunch, inputs=input_image, outputs=[class_name, confidence]) demo.launch()