from transformers import AutoTokenizer, AutoModelForCausalLM | |
# Load model and tokenizer | |
model_name = "mistralai/Codestral-22B-v0.1" | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# No need to move model to GPU, default is CPU | |
# model.to("cpu") # This line can be omitted since it's already on CPU by default | |
# Encode input tokens | |
input_text = "Your input text here" | |
tokens = tokenizer(input_text, return_tensors="pt").input_ids | |
# Generate output | |
generated_ids = model.generate(tokens, max_new_tokens=1000, do_sample=True) | |
# Decode generated tokens | |
result = tokenizer.decode(generated_ids[0].tolist(), skip_special_tokens=True) | |
print(result) | |