Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,132 +1,10 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
DEFAULT_MAX_NEW_TOKENS = 1024
|
12 |
-
total_count = 0
|
13 |
-
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
14 |
-
|
15 |
-
DESCRIPTION = """\
|
16 |
-
# DeepSeek-33B-Chat
|
17 |
-
This space demonstrates model [DeepSeek-Coder](https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct) by DeepSeek, a code model with 33B parameters fine-tuned for chat instructions.
|
18 |
-
**You can also try our 33B model in [official homepage](https://coder.deepseek.com/chat).**
|
19 |
-
"""
|
20 |
-
|
21 |
-
# Check if CUDA is available
|
22 |
-
if not torch.cuda.is_available():
|
23 |
-
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo might be slow on CPU.</p>"
|
24 |
-
device = torch.device("cpu")
|
25 |
-
else:
|
26 |
-
device = torch.device("cuda")
|
27 |
-
model_id = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct"
|
28 |
-
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto")
|
29 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
30 |
-
tokenizer.use_default_system_prompt = False
|
31 |
-
|
32 |
-
# Fallback to CPU for model loading if CUDA is unavailable
|
33 |
-
if not torch.cuda.is_available():
|
34 |
-
model_id = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct"
|
35 |
-
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="cpu")
|
36 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
37 |
-
|
38 |
-
@spaces.GPU
|
39 |
-
def generate(
|
40 |
-
message: str,
|
41 |
-
chat_history: list[tuple[str, str]],
|
42 |
-
system_prompt: str,
|
43 |
-
max_new_tokens: int = 1024,
|
44 |
-
temperature: float = 0.6,
|
45 |
-
top_p: float = 0.9,
|
46 |
-
top_k: int = 50,
|
47 |
-
repetition_penalty: float = 1,
|
48 |
-
) -> Iterator[str]:
|
49 |
-
global total_count
|
50 |
-
total_count += 1
|
51 |
-
print(total_count)
|
52 |
-
os.system("nvidia-smi")
|
53 |
-
conversation = []
|
54 |
-
if system_prompt:
|
55 |
-
conversation.append({"role": "system", "content": system_prompt})
|
56 |
-
for user, assistant in chat_history:
|
57 |
-
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
58 |
-
conversation.append({"role": "user", "content": message})
|
59 |
-
|
60 |
-
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
|
61 |
-
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
62 |
-
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
63 |
-
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
64 |
-
input_ids = input_ids.to(device)
|
65 |
-
|
66 |
-
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
67 |
-
generate_kwargs = dict(
|
68 |
-
{"input_ids": input_ids},
|
69 |
-
streamer=streamer,
|
70 |
-
max_new_tokens=max_new_tokens,
|
71 |
-
do_sample=False,
|
72 |
-
top_p=top_p,
|
73 |
-
top_k=top_k,
|
74 |
-
num_beams=1,
|
75 |
-
repetition_penalty=repetition_penalty,
|
76 |
-
eos_token_id=32021
|
77 |
-
)
|
78 |
-
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
79 |
-
t.start()
|
80 |
-
|
81 |
-
outputs = []
|
82 |
-
for text in streamer:
|
83 |
-
outputs.append(text)
|
84 |
-
yield "".join(outputs).replace("<|EOT|>", "")
|
85 |
-
|
86 |
-
chat_interface = gr.ChatInterface(
|
87 |
-
fn=generate,
|
88 |
-
additional_inputs=[
|
89 |
-
gr.Textbox(label="System prompt", lines=6),
|
90 |
-
gr.Slider(
|
91 |
-
label="Max new tokens",
|
92 |
-
minimum=1,
|
93 |
-
maximum=MAX_MAX_NEW_TOKENS,
|
94 |
-
step=1,
|
95 |
-
value=DEFAULT_MAX_NEW_TOKENS,
|
96 |
-
),
|
97 |
-
gr.Slider(
|
98 |
-
label="Top-p (nucleus sampling)",
|
99 |
-
minimum=0.05,
|
100 |
-
maximum=1.0,
|
101 |
-
step=0.05,
|
102 |
-
value=0.9,
|
103 |
-
),
|
104 |
-
gr.Slider(
|
105 |
-
label="Top-k",
|
106 |
-
minimum=1,
|
107 |
-
maximum=1000,
|
108 |
-
step=1,
|
109 |
-
value=50,
|
110 |
-
),
|
111 |
-
gr.Slider(
|
112 |
-
label="Repetition penalty",
|
113 |
-
minimum=1.0,
|
114 |
-
maximum=2.0,
|
115 |
-
step=0.05,
|
116 |
-
value=1,
|
117 |
-
),
|
118 |
-
],
|
119 |
-
stop_btn=gr.Button("Stop"),
|
120 |
-
examples=[
|
121 |
-
["implement snake game using pygame"],
|
122 |
-
["Can you explain briefly to me what is the Python programming language?"],
|
123 |
-
["write a program to find the factorial of a number"],
|
124 |
-
],
|
125 |
-
)
|
126 |
-
|
127 |
-
with gr.Blocks(css="style.css") as demo:
|
128 |
-
gr.Markdown(DESCRIPTION)
|
129 |
-
chat_interface.render()
|
130 |
-
|
131 |
-
if __name__ == "__main__":
|
132 |
-
demo.queue(max_size=20).launch()
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
2 |
+
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-7b-instruct-v1.5", trust_remote_code=True)
|
3 |
+
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-7b-instruct-v1.5", trust_remote_code=True).cuda()
|
4 |
+
messages=[
|
5 |
+
{ 'role': 'user', 'content': "write a quick sort algorithm in python."}
|
6 |
+
]
|
7 |
+
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
8 |
+
|
9 |
+
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
|
10 |
+
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|