Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor | |
from qwen_vl_utils import process_vision_info | |
import torch | |
from PIL import Image | |
import subprocess | |
from datetime import datetime | |
import numpy as np | |
import os | |
# subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
# models = { | |
# "Qwen/Qwen2-VL-7B-Instruct": AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").cuda().eval() | |
# } | |
def array_to_image_path(image_array): | |
# Convert numpy array to PIL Image | |
img = Image.fromarray(np.uint8(image_array)) | |
img.thumbnail((1024, 1024)) | |
# Generate a unique filename using timestamp | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
filename = f"image_{timestamp}.png" | |
# Save the image | |
img.save(filename) | |
# Get the full path of the saved image | |
full_path = os.path.abspath(filename) | |
return full_path | |
models = { | |
"Qwen/Qwen2-VL-7B-Instruct": Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", trust_remote_code=True, torch_dtype="auto").cuda().eval() | |
} | |
processors = { | |
"Qwen/Qwen2-VL-7B-Instruct": AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", trust_remote_code=True) | |
} | |
DESCRIPTION = "[Qwen2-VL-7B Demo](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct)" | |
kwargs = {} | |
kwargs['torch_dtype'] = torch.bfloat16 | |
user_prompt = '<|user|>\n' | |
assistant_prompt = '<|assistant|>\n' | |
prompt_suffix = "<|end|>\n" | |
def run_example(image, text_input=None, model_id="Qwen/Qwen2-VL-7B-Instruct"): | |
image_path = array_to_image_path(image) | |
print(image_path) | |
model = models[model_id] | |
processor = processors[model_id] | |
prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}" | |
image = Image.fromarray(image).convert("RGB") | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{ | |
"type": "image", | |
"image": image_path, | |
}, | |
{"type": "text", "text": text_input}, | |
], | |
} | |
] | |
# Preparation for inference | |
text = processor.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt", | |
) | |
inputs = inputs.to("cuda") | |
# Inference: Generation of the output | |
generated_ids = model.generate(**inputs, max_new_tokens=1024) | |
generated_ids_trimmed = [ | |
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
] | |
output_text = processor.batch_decode( | |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
) | |
return output_text[0] | |
css = """ | |
#output { | |
height: 500px; | |
overflow: auto; | |
border: 1px solid #ccc; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown(DESCRIPTION) | |
with gr.Tab(label="Qwen2-VL-7B Input"): | |
with gr.Row(): | |
with gr.Column(): | |
input_img = gr.Image(label="Input Picture") | |
model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="Qwen/Qwen2-VL-7B-Instruct") | |
text_input = gr.Textbox(label="Question") | |
submit_btn = gr.Button(value="Submit") | |
with gr.Column(): | |
output_text = gr.Textbox(label="Output Text") | |
submit_btn.click(run_example, [input_img, text_input, model_selector], [output_text]) | |
demo.queue(api_open=False) | |
demo.launch(debug=True) |