Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -11,15 +11,12 @@ CHUNK_SIZE = 1000
|
|
11 |
|
12 |
# Clickable links function
|
13 |
def clickable(x, which_one):
|
|
|
|
|
14 |
if which_one == "models":
|
15 |
-
|
16 |
-
return f'<a target="_blank" href="https://huggingface.co/{x}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{x}</a>'
|
17 |
-
else:
|
18 |
-
return "Not Found"
|
19 |
else:
|
20 |
-
|
21 |
-
return f'<a target="_blank" href="https://huggingface.co/{which_one}/{x}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{x}</a>'
|
22 |
-
return "Not Found"
|
23 |
|
24 |
# Fetch models and return a DataFrame with clickable links
|
25 |
def fetch_models():
|
@@ -37,7 +34,7 @@ def fetch_models():
|
|
37 |
"Last Modified": model.last_modified.isoformat() if model.last_modified else "N/A",
|
38 |
})
|
39 |
df = pd.DataFrame(data)
|
40 |
-
# Apply clickable links
|
41 |
df["Model ID"] = df["Model ID"].apply(lambda x: clickable(x, "models"))
|
42 |
df["Author Name"] = df["Author Name"].apply(lambda x: clickable(x, "models"))
|
43 |
return df
|
@@ -45,6 +42,7 @@ def fetch_models():
|
|
45 |
# Prepare authors DataFrame
|
46 |
def prepare_authors_df(models_df):
|
47 |
authors_df = models_df.copy()
|
|
|
48 |
authors_df["Clean Author Name"] = authors_df["Author Name"].str.extract(r'href="https://huggingface\.co/(.*?)"')
|
49 |
|
50 |
grouped = authors_df.groupby("Clean Author Name").agg(
|
@@ -54,6 +52,7 @@ def prepare_authors_df(models_df):
|
|
54 |
).reset_index()
|
55 |
|
56 |
grouped.rename(columns={"Clean Author Name": "Author Name"}, inplace=True)
|
|
|
57 |
return grouped.sort_values(by="Models_Count", ascending=False)
|
58 |
|
59 |
all_models_df = fetch_models().sort_values(by="Downloads (30d)", ascending=False)
|
@@ -64,11 +63,60 @@ total_models_count = len(all_models_df)
|
|
64 |
total_downloads = all_models_df["Downloads (30d)"].sum()
|
65 |
total_likes = all_models_df["Likes"].sum()
|
66 |
|
67 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
new_end = start_idx + CHUNK_SIZE
|
69 |
-
combined_df =
|
70 |
return combined_df, new_end
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
with gr.Blocks() as demo:
|
73 |
gr.Markdown(f"""
|
74 |
# 🚀GGUF Tracker🚀
|
@@ -86,25 +134,55 @@ with gr.Blocks() as demo:
|
|
86 |
|
87 |
with gr.Tabs():
|
88 |
with gr.TabItem("Models"):
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
model_table = gr.DataFrame(
|
90 |
value=all_models_df.iloc[:CHUNK_SIZE],
|
91 |
-
interactive=
|
92 |
-
label="GGUF Models",
|
93 |
wrap=True,
|
94 |
datatype=["markdown", "markdown", "number", "number", "str", "str"]
|
95 |
)
|
96 |
load_more_button = gr.Button("Load More Models")
|
|
|
|
|
97 |
start_idx = gr.State(value=CHUNK_SIZE)
|
|
|
98 |
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
with gr.TabItem("Authors"):
|
102 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
value=authors_df,
|
104 |
interactive=False,
|
105 |
-
label="Authors",
|
106 |
wrap=True,
|
107 |
-
datatype=["
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
)
|
109 |
|
110 |
demo.launch()
|
|
|
11 |
|
12 |
# Clickable links function
|
13 |
def clickable(x, which_one):
|
14 |
+
if x in ["Not Found", "Unknown"]:
|
15 |
+
return "Not Found"
|
16 |
if which_one == "models":
|
17 |
+
return f'<a target="_blank" href="https://huggingface.co/{x}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{x}</a>'
|
|
|
|
|
|
|
18 |
else:
|
19 |
+
return f'<a target="_blank" href="https://huggingface.co/{which_one}/{x}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{x}</a>'
|
|
|
|
|
20 |
|
21 |
# Fetch models and return a DataFrame with clickable links
|
22 |
def fetch_models():
|
|
|
34 |
"Last Modified": model.last_modified.isoformat() if model.last_modified else "N/A",
|
35 |
})
|
36 |
df = pd.DataFrame(data)
|
37 |
+
# Apply clickable links to models and authors
|
38 |
df["Model ID"] = df["Model ID"].apply(lambda x: clickable(x, "models"))
|
39 |
df["Author Name"] = df["Author Name"].apply(lambda x: clickable(x, "models"))
|
40 |
return df
|
|
|
42 |
# Prepare authors DataFrame
|
43 |
def prepare_authors_df(models_df):
|
44 |
authors_df = models_df.copy()
|
45 |
+
# Extract the author name from the href in the clickable link
|
46 |
authors_df["Clean Author Name"] = authors_df["Author Name"].str.extract(r'href="https://huggingface\.co/(.*?)"')
|
47 |
|
48 |
grouped = authors_df.groupby("Clean Author Name").agg(
|
|
|
52 |
).reset_index()
|
53 |
|
54 |
grouped.rename(columns={"Clean Author Name": "Author Name"}, inplace=True)
|
55 |
+
grouped["Author Name"] = grouped["Author Name"].apply(lambda x: clickable(x, "models"))
|
56 |
return grouped.sort_values(by="Models_Count", ascending=False)
|
57 |
|
58 |
all_models_df = fetch_models().sort_values(by="Downloads (30d)", ascending=False)
|
|
|
63 |
total_downloads = all_models_df["Downloads (30d)"].sum()
|
64 |
total_likes = all_models_df["Likes"].sum()
|
65 |
|
66 |
+
def apply_model_filters(search_query, min_downloads, min_likes):
|
67 |
+
df = all_models_df.copy()
|
68 |
+
|
69 |
+
# Extract visible text for filtering purposes:
|
70 |
+
visible_model_id = df["Model ID"].str.extract(r'>(.*?)<')[0]
|
71 |
+
visible_author_name = df["Author Name"].str.extract(r'>(.*?)<')[0]
|
72 |
+
|
73 |
+
# Search filter
|
74 |
+
if search_query.strip():
|
75 |
+
mask = (visible_model_id.str.contains(search_query, case=False, na=False)) | \
|
76 |
+
(visible_author_name.str.contains(search_query, case=False, na=False))
|
77 |
+
df = df[mask]
|
78 |
+
|
79 |
+
# Minimum downloads filter
|
80 |
+
if min_downloads is not None and min_downloads > 0:
|
81 |
+
df = df[df["Downloads (30d)"] >= min_downloads]
|
82 |
+
|
83 |
+
# Minimum likes filter
|
84 |
+
if min_likes is not None and min_likes > 0:
|
85 |
+
df = df[df["Likes"] >= min_likes]
|
86 |
+
|
87 |
+
return df
|
88 |
+
|
89 |
+
def filter_models(search_query, min_downloads, min_likes):
|
90 |
+
filtered = apply_model_filters(search_query, min_downloads, min_likes)
|
91 |
+
return filtered.iloc[:CHUNK_SIZE], CHUNK_SIZE, filtered
|
92 |
+
|
93 |
+
def update_model_table(start_idx, filtered_df):
|
94 |
new_end = start_idx + CHUNK_SIZE
|
95 |
+
combined_df = filtered_df.iloc[:new_end].copy()
|
96 |
return combined_df, new_end
|
97 |
|
98 |
+
def apply_author_filters(search_query, min_author_downloads, min_author_likes):
|
99 |
+
df = authors_df.copy()
|
100 |
+
|
101 |
+
# Extract visible text for author filtering:
|
102 |
+
visible_author_name = df["Author Name"].str.extract(r'>(.*?)<')[0]
|
103 |
+
|
104 |
+
# Search filter for authors
|
105 |
+
if search_query.strip():
|
106 |
+
mask = visible_author_name.str.contains(search_query, case=False, na=False)
|
107 |
+
df = df[mask]
|
108 |
+
|
109 |
+
# Minimum total downloads filter
|
110 |
+
if min_author_downloads is not None and min_author_downloads > 0:
|
111 |
+
df = df[df["Total_Downloads"] >= min_author_downloads]
|
112 |
+
|
113 |
+
# Minimum total likes filter
|
114 |
+
if min_author_likes is not None and min_author_likes > 0:
|
115 |
+
df = df[df["Total_Likes"] >= min_author_likes]
|
116 |
+
|
117 |
+
return df
|
118 |
+
|
119 |
+
|
120 |
with gr.Blocks() as demo:
|
121 |
gr.Markdown(f"""
|
122 |
# 🚀GGUF Tracker🚀
|
|
|
134 |
|
135 |
with gr.Tabs():
|
136 |
with gr.TabItem("Models"):
|
137 |
+
with gr.Row():
|
138 |
+
search_query = gr.Textbox(label="Search (by Model ID or Author Name)")
|
139 |
+
min_downloads = gr.Number(label="Min Downloads (30d)", value=0)
|
140 |
+
min_likes = gr.Number(label="Min Likes", value=0)
|
141 |
+
|
142 |
+
filter_button = gr.Button("Apply Filters")
|
143 |
model_table = gr.DataFrame(
|
144 |
value=all_models_df.iloc[:CHUNK_SIZE],
|
145 |
+
interactive=False,
|
146 |
+
label="GGUF Models (Click column headers to sort)",
|
147 |
wrap=True,
|
148 |
datatype=["markdown", "markdown", "number", "number", "str", "str"]
|
149 |
)
|
150 |
load_more_button = gr.Button("Load More Models")
|
151 |
+
|
152 |
+
# States
|
153 |
start_idx = gr.State(value=CHUNK_SIZE)
|
154 |
+
filtered_df_state = gr.State(value=all_models_df) # holds the currently filtered df
|
155 |
|
156 |
+
filter_button.click(
|
157 |
+
fn=filter_models,
|
158 |
+
inputs=[search_query, min_downloads, min_likes],
|
159 |
+
outputs=[model_table, start_idx, filtered_df_state]
|
160 |
+
)
|
161 |
+
load_more_button.click(fn=update_model_table, inputs=[start_idx, filtered_df_state], outputs=[model_table, start_idx])
|
162 |
|
163 |
with gr.TabItem("Authors"):
|
164 |
+
with gr.Row():
|
165 |
+
author_search_query = gr.Textbox(label="Search by Author Name")
|
166 |
+
min_author_downloads = gr.Number(label="Min Total Downloads", value=0)
|
167 |
+
min_author_likes = gr.Number(label="Min Total Likes", value=0)
|
168 |
+
|
169 |
+
author_filter_button = gr.Button("Apply Filters")
|
170 |
+
author_table = gr.DataFrame(
|
171 |
value=authors_df,
|
172 |
interactive=False,
|
173 |
+
label="Authors (Click column headers to sort)",
|
174 |
wrap=True,
|
175 |
+
datatype=["markdown", "number", "number", "number"]
|
176 |
+
)
|
177 |
+
|
178 |
+
def filter_authors(author_search_query, min_author_downloads, min_author_likes):
|
179 |
+
filtered_authors = apply_author_filters(author_search_query, min_author_downloads, min_author_likes)
|
180 |
+
return filtered_authors
|
181 |
+
|
182 |
+
author_filter_button.click(
|
183 |
+
fn=filter_authors,
|
184 |
+
inputs=[author_search_query, min_author_downloads, min_author_likes],
|
185 |
+
outputs=author_table
|
186 |
)
|
187 |
|
188 |
demo.launch()
|