import os import streamlit as st import torch from langchain.chains import LLMChain from langchain.prompts import ChatPromptTemplate from langchain_huggingface import HuggingFaceEndpoint def create_prompt(name1: str, name2: str, persona_style: str): """Create a prompt that instructs the model to produce all 15 messages at once.""" prompt_template_str = f""" You are to simulate a conversation of exactly 15 messages total between two people: {name1} and {name2}. The conversation should reflect the style: {persona_style}. {name1} speaks first (message 1), {name2} responds (message 2), then {name1} (message 3), and so on, alternating until 15 messages are complete. Rules: - Each message should be written as: {name1}: or {name2}: - Each message should be 1-2 short sentences, friendly, and natural. - Keep it casual, can ask questions, share opinions. - Use emojis sparingly if it fits the persona (no more than 1-2 per message). - Do not repeat the same line over and over. - The conversation must flow logically and naturally. - After producing exactly 15 messages (the 15th message by {name1}), stop. Do not add anything else. - Do not continue the conversation beyond 15 messages. Produce all 15 messages now: """ return ChatPromptTemplate.from_template(prompt_template_str) def summarize_conversation(chain: LLMChain, conversation: str, name1: str, name2: str): """Summarize the completed conversation.""" st.write("**Summarizing the conversation...**") print("Summarizing the conversation...") summary_prompt = f""" Below is a completed conversation between {name1} and {name2}: {conversation} Use the conversation above and write a short Title and a summary of above conversation. The summary should be in paragraph which highlights what was the conversation about. """ try: response = chain.run(chat_history="", input=summary_prompt) return response.strip() except Exception as e: st.error(f"Error summarizing conversation: {e}") print(f"Error summarizing conversation: {e}") return "Title: No Title\nSummary: No summary available due to error." def main(): st.title("LLM Conversation Simulation") model_names = [ "meta-llama/Llama-3.3-70B-Instruct", "meta-llama/Llama-3.1-405B-Instruct", "lmsys/vicuna-13b-v1.5" ] selected_model = st.selectbox("Select a model:", model_names) name1 = st.text_input("Enter the first user's name:", value="Alice") name2 = st.text_input("Enter the second user's name:", value="Bob") persona_style = st.text_area("Enter the persona style characteristics:", value="friendly, curious, and a bit sarcastic") if st.button("Start Conversation Simulation"): st.write("**Loading model...**") print("Loading model...") with st.spinner("Starting simulation..."): endpoint_url = f"https://api-inference.huggingface.co/models/{selected_model}" try: llm = HuggingFaceEndpoint( endpoint_url=endpoint_url, huggingfacehub_api_token=os.environ.get("HUGGINGFACEHUB_API_TOKEN"), task="text-generation", temperature=0.7, max_new_tokens=512 ) st.write("**Model loaded successfully!**") print("Model loaded successfully!") except Exception as e: st.error(f"Error initializing HuggingFaceEndpoint: {e}") print(f"Error initializing HuggingFaceEndpoint: {e}") return prompt = create_prompt(name1, name2, persona_style) chain = LLMChain(llm=llm, prompt=prompt) st.write("**Generating the full 15-message conversation...**") print("Generating the full 15-message conversation...") try: # Generate all 15 messages in one go conversation = chain.run(chat_history="", input="Produce the full conversation now.") conversation = conversation.strip() # Print and display the conversation st.subheader("Final Conversation:") st.text(conversation) print("Conversation Generation Complete.\n") print("Full Conversation:\n", conversation) # Summarize the conversation st.subheader("Summary and Title:") summary = summarize_conversation(chain, conversation, name1, name2) st.write(summary) print("Summary:\n", summary) except Exception as e: st.error(f"Error generating conversation: {e}") print(f"Error generating conversation: {e}") if __name__ == "__main__": main()