Update app.py
Browse files
app.py
CHANGED
@@ -1,71 +1,107 @@
|
|
1 |
import os
|
2 |
import time
|
3 |
|
|
|
4 |
import streamlit as st
|
|
|
5 |
|
6 |
from extract import extract_text_from_pdfs
|
7 |
from generate import generate_response
|
8 |
from preprocess import preprocess_text
|
9 |
from retrieve import create_vectorizer, retrieve
|
10 |
|
11 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
st.title("RAG-based PDF Query System")
|
13 |
|
|
|
14 |
uploaded_files = st.file_uploader("Upload PDFs", type=["pdf"], accept_multiple_files=True)
|
15 |
|
16 |
if uploaded_files:
|
17 |
-
st.
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
st.write(response)
|
68 |
|
69 |
-
|
70 |
-
|
|
|
71 |
os.remove(pdf_file)
|
|
|
1 |
import os
|
2 |
import time
|
3 |
|
4 |
+
import openai
|
5 |
import streamlit as st
|
6 |
+
from dotenv import load_dotenv
|
7 |
|
8 |
from extract import extract_text_from_pdfs
|
9 |
from generate import generate_response
|
10 |
from preprocess import preprocess_text
|
11 |
from retrieve import create_vectorizer, retrieve
|
12 |
|
13 |
+
# Load environment variables from .env file
|
14 |
+
load_dotenv()
|
15 |
+
|
16 |
+
# Set OpenAI API key
|
17 |
+
openai.api_key = os.getenv('OPENAI_API_KEY')
|
18 |
+
|
19 |
+
# Initialize session state
|
20 |
+
if "messages" not in st.session_state:
|
21 |
+
st.session_state.messages = []
|
22 |
+
|
23 |
+
if "pdf_files" not in st.session_state:
|
24 |
+
st.session_state.pdf_files = []
|
25 |
+
|
26 |
+
if "processed_texts" not in st.session_state:
|
27 |
+
st.session_state.processed_texts = []
|
28 |
+
|
29 |
st.title("RAG-based PDF Query System")
|
30 |
|
31 |
+
# File uploader for PDF files
|
32 |
uploaded_files = st.file_uploader("Upload PDFs", type=["pdf"], accept_multiple_files=True)
|
33 |
|
34 |
if uploaded_files:
|
35 |
+
if "uploaded_files" not in st.session_state or uploaded_files != st.session_state.uploaded_files:
|
36 |
+
st.session_state.uploaded_files = uploaded_files
|
37 |
+
st.session_state.messages = [] # Clear previous messages
|
38 |
+
st.session_state.pdf_files = []
|
39 |
+
st.session_state.processed_texts = []
|
40 |
+
|
41 |
+
# Initialize status container
|
42 |
+
with st.status("Processing the uploaded PDFs...", state="running") as status:
|
43 |
+
# Save uploaded files to disk
|
44 |
+
for uploaded_file in uploaded_files:
|
45 |
+
with open(uploaded_file.name, "wb") as f:
|
46 |
+
f.write(uploaded_file.getbuffer())
|
47 |
+
st.session_state.pdf_files.append(uploaded_file.name)
|
48 |
+
|
49 |
+
# Extract text from PDFs
|
50 |
+
num_files = len(st.session_state.pdf_files)
|
51 |
+
texts = []
|
52 |
+
for i, pdf_file in enumerate(st.session_state.pdf_files):
|
53 |
+
st.write(f"Extracting text from file {i + 1} of {num_files}...")
|
54 |
+
text = extract_text_from_pdfs([pdf_file])
|
55 |
+
texts.extend(text)
|
56 |
+
time.sleep(0.1) # Simulate time taken for processing
|
57 |
+
|
58 |
+
# Preprocess text
|
59 |
+
st.write("Preprocessing text...")
|
60 |
+
st.session_state.processed_texts = preprocess_text(texts)
|
61 |
+
time.sleep(0.1) # Simulate time taken for processing
|
62 |
+
|
63 |
+
# Create vectorizer and transform texts
|
64 |
+
st.write("Creating vectorizer and transforming texts...")
|
65 |
+
st.session_state.vectorizer, st.session_state.X = create_vectorizer(st.session_state.processed_texts)
|
66 |
+
time.sleep(0.1) # Simulate time taken for processing
|
67 |
+
|
68 |
+
# Update status to complete
|
69 |
+
status.update(label="Processing complete!", state="complete")
|
70 |
+
|
71 |
+
else:
|
72 |
+
st.stop()
|
73 |
+
|
74 |
+
# Chat interface
|
75 |
+
st.write("### Ask a question about the uploaded PDFs")
|
76 |
+
|
77 |
+
# Display chat messages
|
78 |
+
for message in st.session_state.messages:
|
79 |
+
with st.chat_message(message["role"]):
|
80 |
+
st.write(message["content"])
|
81 |
+
|
82 |
+
# Chat input
|
83 |
+
prompt = st.chat_input("Ask something about the uploaded PDFs")
|
84 |
+
if prompt:
|
85 |
+
# Add user message to session state
|
86 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
87 |
+
|
88 |
+
# Retrieve relevant texts
|
89 |
+
top_indices = retrieve(prompt, st.session_state.X, st.session_state.vectorizer)
|
90 |
+
retrieved_texts = [" ".join(st.session_state.processed_texts[i]) for i in top_indices]
|
91 |
+
|
92 |
+
# Generate response
|
93 |
+
response = generate_response(retrieved_texts, prompt)
|
94 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
95 |
+
|
96 |
+
# Display user message
|
97 |
+
with st.chat_message("user"):
|
98 |
+
st.write(prompt)
|
99 |
+
|
100 |
+
# Display assistant message
|
101 |
+
with st.chat_message("assistant"):
|
102 |
st.write(response)
|
103 |
|
104 |
+
# Clean up uploaded files
|
105 |
+
for pdf_file in st.session_state.pdf_files:
|
106 |
+
if os.path.exists(pdf_file):
|
107 |
os.remove(pdf_file)
|