RakeshUtekar
commited on
app.py
Browse files
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
|
4 |
+
import streamlit as st
|
5 |
+
|
6 |
+
from extract import extract_text_from_pdfs
|
7 |
+
from generate import generate_response
|
8 |
+
from preprocess import preprocess_text
|
9 |
+
from retrieve import create_vectorizer, retrieve
|
10 |
+
|
11 |
+
# Streamlit UI
|
12 |
+
st.title("RAG-based PDF Query System")
|
13 |
+
|
14 |
+
uploaded_files = st.file_uploader("Upload PDFs", type=["pdf"], accept_multiple_files=True)
|
15 |
+
|
16 |
+
if uploaded_files:
|
17 |
+
st.write("Processing the uploaded PDFs...")
|
18 |
+
|
19 |
+
# Initialize progress bar
|
20 |
+
progress_bar = st.progress(0)
|
21 |
+
status_text = st.empty()
|
22 |
+
|
23 |
+
# Save uploaded files to disk
|
24 |
+
pdf_files = []
|
25 |
+
for uploaded_file in uploaded_files:
|
26 |
+
with open(uploaded_file.name, "wb") as f:
|
27 |
+
f.write(uploaded_file.getbuffer())
|
28 |
+
pdf_files.append(uploaded_file.name)
|
29 |
+
|
30 |
+
# Extract text from PDFs with progress updates
|
31 |
+
num_files = len(pdf_files)
|
32 |
+
texts = []
|
33 |
+
for i, pdf_file in enumerate(pdf_files):
|
34 |
+
status_text.text(f"Extracting text from file {i + 1} of {num_files}...")
|
35 |
+
text = extract_text_from_pdfs([pdf_file])
|
36 |
+
texts.extend(text)
|
37 |
+
progress_bar.progress((i + 1) / num_files)
|
38 |
+
time.sleep(0.1) # Simulate time taken for processing
|
39 |
+
|
40 |
+
# Preprocess text with progress updates
|
41 |
+
status_text.text("Preprocessing text...")
|
42 |
+
progress_bar.progress(0.5)
|
43 |
+
processed_texts = preprocess_text(texts)
|
44 |
+
time.sleep(0.1) # Simulate time taken for processing
|
45 |
+
|
46 |
+
# Create vectorizer and transform texts
|
47 |
+
status_text.text("Creating vectorizer and transforming texts...")
|
48 |
+
progress_bar.progress(0.75)
|
49 |
+
vectorizer, X = create_vectorizer(processed_texts)
|
50 |
+
time.sleep(0.1) # Simulate time taken for processing
|
51 |
+
|
52 |
+
# Finalize progress
|
53 |
+
progress_bar.progress(1.0)
|
54 |
+
status_text.text("Processing complete!")
|
55 |
+
|
56 |
+
query = st.text_input("Enter your query:")
|
57 |
+
|
58 |
+
if query:
|
59 |
+
# Retrieve relevant texts
|
60 |
+
top_indices = retrieve(query, X, vectorizer)
|
61 |
+
retrieved_texts = [texts[i] for i in top_indices]
|
62 |
+
|
63 |
+
# Generate response
|
64 |
+
response = generate_response(retrieved_texts, query)
|
65 |
+
|
66 |
+
st.write("Response:")
|
67 |
+
st.write(response)
|
68 |
+
|
69 |
+
# Clean up uploaded files
|
70 |
+
for pdf_file in pdf_files:
|
71 |
+
os.remove(pdf_file)
|