Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -22,18 +22,24 @@ def get_data_table():
|
|
22 |
tables = con.execute(text(
|
23 |
"SELECT name FROM sqlite_master WHERE type='table' AND name NOT LIKE 'sqlite_%'"
|
24 |
)).fetchall()
|
|
|
25 |
if not tables:
|
26 |
return pd.DataFrame()
|
|
|
27 |
# Use the first table found
|
28 |
table_name = tables[0][0]
|
|
|
29 |
with engine.connect() as con:
|
30 |
result = con.execute(text(f"SELECT * FROM {table_name}"))
|
31 |
rows = result.fetchall()
|
|
|
32 |
if not rows:
|
33 |
return pd.DataFrame()
|
|
|
34 |
columns = result.keys()
|
35 |
df = pd.DataFrame(rows, columns=columns)
|
36 |
return df
|
|
|
37 |
except Exception as e:
|
38 |
return pd.DataFrame({"Error": [str(e)]})
|
39 |
|
@@ -49,13 +55,17 @@ def get_table_info():
|
|
49 |
tables = con.execute(text(
|
50 |
"SELECT name FROM sqlite_master WHERE type='table' AND name NOT LIKE 'sqlite_%'"
|
51 |
)).fetchall()
|
|
|
52 |
if not tables:
|
53 |
return None, [], {}
|
|
|
54 |
# Use the first table found
|
55 |
table_name = tables[0][0]
|
|
|
56 |
# Get column information
|
57 |
with engine.connect() as con:
|
58 |
columns = con.execute(text(f"PRAGMA table_info({table_name})")).fetchall()
|
|
|
59 |
# Extract column names and types
|
60 |
column_names = [col[1] for col in columns]
|
61 |
column_info = {
|
@@ -65,7 +75,9 @@ def get_table_info():
|
|
65 |
}
|
66 |
for col in columns
|
67 |
}
|
|
|
68 |
return table_name, column_names, column_info
|
|
|
69 |
except Exception as e:
|
70 |
print(f"Error getting table info: {str(e)}")
|
71 |
return None, [], {}
|
@@ -78,18 +90,24 @@ def process_sql_file(file_path):
|
|
78 |
# Read the SQL file
|
79 |
with open(file_path, 'r') as file:
|
80 |
sql_content = file.read()
|
|
|
81 |
# Replace AUTO_INCREMENT with AUTOINCREMENT for SQLite compatibility
|
82 |
sql_content = sql_content.replace('AUTO_INCREMENT', 'AUTOINCREMENT')
|
|
|
83 |
# Split into individual statements
|
84 |
statements = [stmt.strip() for stmt in sql_content.split(';') if stmt.strip()]
|
|
|
85 |
# Clear existing database
|
86 |
clear_database()
|
|
|
87 |
# Execute each statement
|
88 |
with engine.begin() as conn:
|
89 |
for statement in statements:
|
90 |
if statement.strip():
|
91 |
conn.execute(text(statement))
|
|
|
92 |
return True, "SQL file successfully executed!"
|
|
|
93 |
except Exception as e:
|
94 |
return False, f"Error processing SQL file: {str(e)}"
|
95 |
|
@@ -100,15 +118,20 @@ def process_csv_file(file_path):
|
|
100 |
try:
|
101 |
# Read the CSV file
|
102 |
df = pd.read_csv(file_path)
|
|
|
103 |
if len(df.columns) == 0:
|
104 |
return False, "Error: File contains no columns"
|
|
|
105 |
# Clear existing database and create new table
|
106 |
clear_database()
|
107 |
table = create_dynamic_table(df)
|
|
|
108 |
# Convert DataFrame to list of dictionaries and insert
|
109 |
records = df.to_dict('records')
|
110 |
insert_rows_into_table(records, table)
|
|
|
111 |
return True, "CSV file successfully loaded!"
|
|
|
112 |
except Exception as e:
|
113 |
return False, f"Error processing CSV file: {str(e)}"
|
114 |
|
@@ -119,14 +142,17 @@ def process_uploaded_file(file):
|
|
119 |
try:
|
120 |
if file is None:
|
121 |
return False, "Please upload a file."
|
|
|
122 |
# Get file extension
|
123 |
file_ext = os.path.splitext(file)[1].lower()
|
|
|
124 |
if file_ext == '.sql':
|
125 |
return process_sql_file(file)
|
126 |
elif file_ext == '.csv':
|
127 |
return process_csv_file(file)
|
128 |
else:
|
129 |
return False, "Error: Unsupported file type. Please upload either a .sql or .csv file."
|
|
|
130 |
except Exception as e:
|
131 |
return False, f"Error processing file: {str(e)}"
|
132 |
|
@@ -134,19 +160,25 @@ def process_uploaded_file(file):
|
|
134 |
def sql_engine(query: str) -> str:
|
135 |
"""
|
136 |
Executes an SQL query and returns formatted results.
|
|
|
137 |
Args:
|
138 |
query: The SQL query string to execute on the database. Must be a valid SELECT query.
|
|
|
139 |
Returns:
|
140 |
str: The formatted query results as a string.
|
141 |
"""
|
142 |
try:
|
143 |
with engine.connect() as con:
|
144 |
rows = con.execute(text(query)).fetchall()
|
|
|
145 |
if not rows:
|
146 |
return "No results found."
|
147 |
-
|
|
|
148 |
return str(rows[0][0])
|
|
|
149 |
return "\n".join([", ".join(map(str, row)) for row in rows])
|
|
|
150 |
except Exception as e:
|
151 |
return f"Error: {str(e)}"
|
152 |
|
@@ -155,15 +187,15 @@ agent = CodeAgent(
|
|
155 |
model=HfApiModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct"),
|
156 |
)
|
157 |
|
158 |
-
def query_sql(user_query: str
|
159 |
"""
|
160 |
Converts natural language input to an SQL query using CodeAgent.
|
161 |
"""
|
162 |
table_name, column_names, column_info = get_table_info()
|
163 |
|
164 |
if not table_name:
|
165 |
-
return "Error: No data table exists. Please upload a file first."
|
166 |
-
|
167 |
schema_info = (
|
168 |
f"The database has a table named '{table_name}' with the following columns:\n"
|
169 |
+ "\n".join([
|
@@ -177,16 +209,15 @@ def query_sql(user_query: str, show_full: bool) -> tuple:
|
|
177 |
"DO NOT explain your reasoning, and DO NOT return anything other than the SQL query itself."
|
178 |
)
|
179 |
|
180 |
-
# Get
|
181 |
-
|
182 |
-
|
183 |
-
if not isinstance(
|
184 |
-
return "Error: Invalid query generated"
|
185 |
|
186 |
# Clean up the SQL
|
187 |
-
generated_sql = full_response
|
188 |
if generated_sql.isnumeric(): # If the agent returned just a number
|
189 |
-
return generated_sql
|
190 |
|
191 |
# Extract just the SQL query if there's additional text
|
192 |
sql_lines = [line for line in generated_sql.split('\n') if 'select' in line.lower()]
|
@@ -200,7 +231,7 @@ def query_sql(user_query: str, show_full: bool) -> tuple:
|
|
200 |
for wrong_name in ['table_name', 'customers', 'main']:
|
201 |
if wrong_name in generated_sql:
|
202 |
generated_sql = generated_sql.replace(wrong_name, table_name)
|
203 |
-
|
204 |
# Add quotes around column names that need them
|
205 |
for col in column_names:
|
206 |
if ' ' in col: # If column name contains spaces
|
@@ -210,40 +241,48 @@ def query_sql(user_query: str, show_full: bool) -> tuple:
|
|
210 |
try:
|
211 |
# Execute the query
|
212 |
result = sql_engine(generated_sql)
|
|
|
213 |
# Try to format as number if possible
|
214 |
try:
|
215 |
float_result = float(result)
|
216 |
-
|
217 |
except ValueError:
|
218 |
-
|
219 |
-
|
220 |
except Exception as e:
|
221 |
if str(e).startswith("(sqlite3.OperationalError) near"):
|
222 |
# If it's a SQL syntax error, return the raw result
|
223 |
-
return generated_sql
|
224 |
-
return f"Error executing query: {str(e)}"
|
225 |
|
226 |
# Create the Gradio interface
|
227 |
with gr.Blocks() as demo:
|
228 |
with gr.Group() as upload_group:
|
229 |
gr.Markdown("""
|
230 |
# CSVAgent
|
|
|
231 |
Upload your data file to begin.
|
|
|
232 |
### Supported File Types:
|
233 |
- CSV (.csv): CSV file with headers that will be automatically converted to a table
|
|
|
234 |
### CSV Requirements:
|
235 |
- Must include headers
|
236 |
- First column will be used as the primary key
|
237 |
- Column types will be automatically detected
|
238 |
- Sample CSV Files: https://github.com/datablist/sample-csv-files
|
239 |
### Based on ZennyKenny's SqlAgent
|
|
|
240 |
### SQL to CSV File Conversion
|
241 |
https://tableconvert.com/sql-to-csv
|
242 |
- Will work on the handling of SQL files soon.
|
|
|
|
|
243 |
### Try it out! Upload a CSV file and then ask a question about the data!
|
244 |
-
- There is issues with the UI displaying the answer correctly, some questions such as "How many Customers are located in Korea?"
|
245 |
The right answer will appear in the logs, but throws an error on the "Results" section.
|
246 |
""")
|
|
|
247 |
file_input = gr.File(
|
248 |
label="Upload Data File",
|
249 |
file_types=[".csv", ".sql"],
|
@@ -256,8 +295,7 @@ with gr.Blocks() as demo:
|
|
256 |
with gr.Column(scale=1):
|
257 |
user_input = gr.Textbox(label="Ask a question about the data")
|
258 |
query_output = gr.Textbox(label="Result")
|
259 |
-
|
260 |
-
full_response_output = gr.Textbox(label="Full Response", visible=False)
|
261 |
with gr.Column(scale=2):
|
262 |
gr.Markdown("### Current Data")
|
263 |
data_table = gr.Dataframe(
|
@@ -265,6 +303,7 @@ with gr.Blocks() as demo:
|
|
265 |
label="Data Table",
|
266 |
interactive=False
|
267 |
)
|
|
|
268 |
schema_display = gr.Markdown(value="Loading schema...")
|
269 |
refresh_btn = gr.Button("Refresh Data")
|
270 |
|
@@ -277,10 +316,11 @@ with gr.Blocks() as demo:
|
|
277 |
gr.update(visible=True),
|
278 |
gr.update(visible=False)
|
279 |
)
|
|
|
280 |
success, message = process_uploaded_file(file_obj)
|
281 |
if success:
|
282 |
df = get_data_table()
|
283 |
-
_,_
|
284 |
schema = "\n".join([
|
285 |
f"- {col} ({info['type']}){' primary key' if info['is_primary'] else ''}"
|
286 |
for col, info in column_info.items()
|
@@ -302,7 +342,7 @@ with gr.Blocks() as demo:
|
|
302 |
|
303 |
def refresh_data():
|
304 |
df = get_data_table()
|
305 |
-
_,_
|
306 |
schema = "\n".join([
|
307 |
f"- {col} ({info['type']}){' primary key' if info['is_primary'] else ''}"
|
308 |
for col, info in column_info.items()
|
@@ -324,14 +364,8 @@ with gr.Blocks() as demo:
|
|
324 |
|
325 |
user_input.change(
|
326 |
fn=query_sql,
|
327 |
-
inputs=
|
328 |
-
outputs=
|
329 |
-
)
|
330 |
-
|
331 |
-
full_response_switch.change(
|
332 |
-
fn=lambda x: gr.update(visible=x),
|
333 |
-
inputs=full_response_switch,
|
334 |
-
outputs=full_response_output
|
335 |
)
|
336 |
|
337 |
refresh_btn.click(
|
|
|
22 |
tables = con.execute(text(
|
23 |
"SELECT name FROM sqlite_master WHERE type='table' AND name NOT LIKE 'sqlite_%'"
|
24 |
)).fetchall()
|
25 |
+
|
26 |
if not tables:
|
27 |
return pd.DataFrame()
|
28 |
+
|
29 |
# Use the first table found
|
30 |
table_name = tables[0][0]
|
31 |
+
|
32 |
with engine.connect() as con:
|
33 |
result = con.execute(text(f"SELECT * FROM {table_name}"))
|
34 |
rows = result.fetchall()
|
35 |
+
|
36 |
if not rows:
|
37 |
return pd.DataFrame()
|
38 |
+
|
39 |
columns = result.keys()
|
40 |
df = pd.DataFrame(rows, columns=columns)
|
41 |
return df
|
42 |
+
|
43 |
except Exception as e:
|
44 |
return pd.DataFrame({"Error": [str(e)]})
|
45 |
|
|
|
55 |
tables = con.execute(text(
|
56 |
"SELECT name FROM sqlite_master WHERE type='table' AND name NOT LIKE 'sqlite_%'"
|
57 |
)).fetchall()
|
58 |
+
|
59 |
if not tables:
|
60 |
return None, [], {}
|
61 |
+
|
62 |
# Use the first table found
|
63 |
table_name = tables[0][0]
|
64 |
+
|
65 |
# Get column information
|
66 |
with engine.connect() as con:
|
67 |
columns = con.execute(text(f"PRAGMA table_info({table_name})")).fetchall()
|
68 |
+
|
69 |
# Extract column names and types
|
70 |
column_names = [col[1] for col in columns]
|
71 |
column_info = {
|
|
|
75 |
}
|
76 |
for col in columns
|
77 |
}
|
78 |
+
|
79 |
return table_name, column_names, column_info
|
80 |
+
|
81 |
except Exception as e:
|
82 |
print(f"Error getting table info: {str(e)}")
|
83 |
return None, [], {}
|
|
|
90 |
# Read the SQL file
|
91 |
with open(file_path, 'r') as file:
|
92 |
sql_content = file.read()
|
93 |
+
|
94 |
# Replace AUTO_INCREMENT with AUTOINCREMENT for SQLite compatibility
|
95 |
sql_content = sql_content.replace('AUTO_INCREMENT', 'AUTOINCREMENT')
|
96 |
+
|
97 |
# Split into individual statements
|
98 |
statements = [stmt.strip() for stmt in sql_content.split(';') if stmt.strip()]
|
99 |
+
|
100 |
# Clear existing database
|
101 |
clear_database()
|
102 |
+
|
103 |
# Execute each statement
|
104 |
with engine.begin() as conn:
|
105 |
for statement in statements:
|
106 |
if statement.strip():
|
107 |
conn.execute(text(statement))
|
108 |
+
|
109 |
return True, "SQL file successfully executed!"
|
110 |
+
|
111 |
except Exception as e:
|
112 |
return False, f"Error processing SQL file: {str(e)}"
|
113 |
|
|
|
118 |
try:
|
119 |
# Read the CSV file
|
120 |
df = pd.read_csv(file_path)
|
121 |
+
|
122 |
if len(df.columns) == 0:
|
123 |
return False, "Error: File contains no columns"
|
124 |
+
|
125 |
# Clear existing database and create new table
|
126 |
clear_database()
|
127 |
table = create_dynamic_table(df)
|
128 |
+
|
129 |
# Convert DataFrame to list of dictionaries and insert
|
130 |
records = df.to_dict('records')
|
131 |
insert_rows_into_table(records, table)
|
132 |
+
|
133 |
return True, "CSV file successfully loaded!"
|
134 |
+
|
135 |
except Exception as e:
|
136 |
return False, f"Error processing CSV file: {str(e)}"
|
137 |
|
|
|
142 |
try:
|
143 |
if file is None:
|
144 |
return False, "Please upload a file."
|
145 |
+
|
146 |
# Get file extension
|
147 |
file_ext = os.path.splitext(file)[1].lower()
|
148 |
+
|
149 |
if file_ext == '.sql':
|
150 |
return process_sql_file(file)
|
151 |
elif file_ext == '.csv':
|
152 |
return process_csv_file(file)
|
153 |
else:
|
154 |
return False, "Error: Unsupported file type. Please upload either a .sql or .csv file."
|
155 |
+
|
156 |
except Exception as e:
|
157 |
return False, f"Error processing file: {str(e)}"
|
158 |
|
|
|
160 |
def sql_engine(query: str) -> str:
|
161 |
"""
|
162 |
Executes an SQL query and returns formatted results.
|
163 |
+
|
164 |
Args:
|
165 |
query: The SQL query string to execute on the database. Must be a valid SELECT query.
|
166 |
+
|
167 |
Returns:
|
168 |
str: The formatted query results as a string.
|
169 |
"""
|
170 |
try:
|
171 |
with engine.connect() as con:
|
172 |
rows = con.execute(text(query)).fetchall()
|
173 |
+
|
174 |
if not rows:
|
175 |
return "No results found."
|
176 |
+
|
177 |
+
if len(rows) == 1 and len(rows[0]) == 1:
|
178 |
return str(rows[0][0])
|
179 |
+
|
180 |
return "\n".join([", ".join(map(str, row)) for row in rows])
|
181 |
+
|
182 |
except Exception as e:
|
183 |
return f"Error: {str(e)}"
|
184 |
|
|
|
187 |
model=HfApiModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct"),
|
188 |
)
|
189 |
|
190 |
+
def query_sql(user_query: str) -> str:
|
191 |
"""
|
192 |
Converts natural language input to an SQL query using CodeAgent.
|
193 |
"""
|
194 |
table_name, column_names, column_info = get_table_info()
|
195 |
|
196 |
if not table_name:
|
197 |
+
return "Error: No data table exists. Please upload a file first."
|
198 |
+
|
199 |
schema_info = (
|
200 |
f"The database has a table named '{table_name}' with the following columns:\n"
|
201 |
+ "\n".join([
|
|
|
209 |
"DO NOT explain your reasoning, and DO NOT return anything other than the SQL query itself."
|
210 |
)
|
211 |
|
212 |
+
# Get SQL from the agent
|
213 |
+
generated_sql = agent.run(f"{schema_info} Convert this request into SQL: {user_query}")
|
214 |
+
|
215 |
+
if not isinstance(generated_sql, str):
|
216 |
+
return "Error: Invalid query generated"
|
217 |
|
218 |
# Clean up the SQL
|
|
|
219 |
if generated_sql.isnumeric(): # If the agent returned just a number
|
220 |
+
return generated_sql
|
221 |
|
222 |
# Extract just the SQL query if there's additional text
|
223 |
sql_lines = [line for line in generated_sql.split('\n') if 'select' in line.lower()]
|
|
|
231 |
for wrong_name in ['table_name', 'customers', 'main']:
|
232 |
if wrong_name in generated_sql:
|
233 |
generated_sql = generated_sql.replace(wrong_name, table_name)
|
234 |
+
|
235 |
# Add quotes around column names that need them
|
236 |
for col in column_names:
|
237 |
if ' ' in col: # If column name contains spaces
|
|
|
241 |
try:
|
242 |
# Execute the query
|
243 |
result = sql_engine(generated_sql)
|
244 |
+
|
245 |
# Try to format as number if possible
|
246 |
try:
|
247 |
float_result = float(result)
|
248 |
+
return f"{float_result:,.0f}" # Format with commas, no decimals
|
249 |
except ValueError:
|
250 |
+
return result
|
251 |
+
|
252 |
except Exception as e:
|
253 |
if str(e).startswith("(sqlite3.OperationalError) near"):
|
254 |
# If it's a SQL syntax error, return the raw result
|
255 |
+
return generated_sql
|
256 |
+
return f"Error executing query: {str(e)}"
|
257 |
|
258 |
# Create the Gradio interface
|
259 |
with gr.Blocks() as demo:
|
260 |
with gr.Group() as upload_group:
|
261 |
gr.Markdown("""
|
262 |
# CSVAgent
|
263 |
+
|
264 |
Upload your data file to begin.
|
265 |
+
|
266 |
### Supported File Types:
|
267 |
- CSV (.csv): CSV file with headers that will be automatically converted to a table
|
268 |
+
|
269 |
### CSV Requirements:
|
270 |
- Must include headers
|
271 |
- First column will be used as the primary key
|
272 |
- Column types will be automatically detected
|
273 |
- Sample CSV Files: https://github.com/datablist/sample-csv-files
|
274 |
### Based on ZennyKenny's SqlAgent
|
275 |
+
|
276 |
### SQL to CSV File Conversion
|
277 |
https://tableconvert.com/sql-to-csv
|
278 |
- Will work on the handling of SQL files soon.
|
279 |
+
|
280 |
+
|
281 |
### Try it out! Upload a CSV file and then ask a question about the data!
|
282 |
+
- There is issues with the UI displaying the answer correctly, some questions such as "How many Customers are located in Korea?"
|
283 |
The right answer will appear in the logs, but throws an error on the "Results" section.
|
284 |
""")
|
285 |
+
|
286 |
file_input = gr.File(
|
287 |
label="Upload Data File",
|
288 |
file_types=[".csv", ".sql"],
|
|
|
295 |
with gr.Column(scale=1):
|
296 |
user_input = gr.Textbox(label="Ask a question about the data")
|
297 |
query_output = gr.Textbox(label="Result")
|
298 |
+
|
|
|
299 |
with gr.Column(scale=2):
|
300 |
gr.Markdown("### Current Data")
|
301 |
data_table = gr.Dataframe(
|
|
|
303 |
label="Data Table",
|
304 |
interactive=False
|
305 |
)
|
306 |
+
|
307 |
schema_display = gr.Markdown(value="Loading schema...")
|
308 |
refresh_btn = gr.Button("Refresh Data")
|
309 |
|
|
|
316 |
gr.update(visible=True),
|
317 |
gr.update(visible=False)
|
318 |
)
|
319 |
+
|
320 |
success, message = process_uploaded_file(file_obj)
|
321 |
if success:
|
322 |
df = get_data_table()
|
323 |
+
_, _, column_info = get_table_info()
|
324 |
schema = "\n".join([
|
325 |
f"- {col} ({info['type']}){' primary key' if info['is_primary'] else ''}"
|
326 |
for col, info in column_info.items()
|
|
|
342 |
|
343 |
def refresh_data():
|
344 |
df = get_data_table()
|
345 |
+
_, _, column_info = get_table_info()
|
346 |
schema = "\n".join([
|
347 |
f"- {col} ({info['type']}){' primary key' if info['is_primary'] else ''}"
|
348 |
for col, info in column_info.items()
|
|
|
364 |
|
365 |
user_input.change(
|
366 |
fn=query_sql,
|
367 |
+
inputs=user_input,
|
368 |
+
outputs=query_output
|
|
|
|
|
|
|
|
|
|
|
|
|
369 |
)
|
370 |
|
371 |
refresh_btn.click(
|