Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,65 +7,35 @@ from langchain.prompts import ChatPromptTemplate
|
|
7 |
from langchain.schema.runnable import RunnablePassthrough
|
8 |
from langchain.schema.output_parser import StrOutputParser
|
9 |
from langchain.memory import ConversationBufferMemory
|
10 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
from typing import List, Tuple
|
12 |
import re
|
13 |
-
|
14 |
-
from datetime import datetime
|
15 |
-
import logging
|
16 |
-
import sys
|
17 |
-
|
18 |
-
# Set up logging
|
19 |
-
logging.basicConfig(
|
20 |
-
level=logging.INFO,
|
21 |
-
format='%(asctime)s - %(levelname)s - %(message)s',
|
22 |
-
handlers=[
|
23 |
-
logging.FileHandler('chatbot.log'),
|
24 |
-
logging.StreamHandler(sys.stdout)
|
25 |
-
]
|
26 |
-
)
|
27 |
-
|
28 |
TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY')
|
29 |
-
DATA_DIR = "data"
|
30 |
-
LEARNED_DATA_FILE = os.path.join(DATA_DIR, "learned_data.json")
|
31 |
-
VECTOR_STORE_DIR = os.path.join(DATA_DIR, "vector_store")
|
32 |
|
33 |
-
class
|
34 |
def __init__(self):
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
self.embeddings = TogetherEmbeddings(
|
40 |
-
model="togethercomputer/m2-bert-80M-32k-retrieval",
|
41 |
-
together_api_key=TOGETHER_API_KEY
|
42 |
-
)
|
43 |
-
except Exception as e:
|
44 |
-
logging.error(f"Failed to initialize embeddings: {str(e)}")
|
45 |
-
raise
|
46 |
-
|
47 |
-
# Initialize text splitter
|
48 |
-
self.text_splitter = RecursiveCharacterTextSplitter(
|
49 |
-
chunk_size=1000,
|
50 |
-
chunk_overlap=200,
|
51 |
-
length_function=len,
|
52 |
)
|
53 |
|
54 |
-
# Load
|
55 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
)
|
66 |
-
except Exception as e:
|
67 |
-
logging.error(f"Failed to initialize Together model: {str(e)}")
|
68 |
-
raise
|
69 |
|
70 |
# Initialize memory
|
71 |
self.memory = ConversationBufferMemory(
|
@@ -81,261 +51,102 @@ Suhbat Tarixi: {chat_history}
|
|
81 |
Savol: {question}
|
82 |
Javobni faqat matn shaklida bering, kod yoki ortiqcha belgilar kiritmang."""
|
83 |
|
|
|
84 |
self.prompt = ChatPromptTemplate.from_template(self.template)
|
85 |
|
86 |
# Create the chain
|
87 |
-
self.
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
# Create learned_data.json if it doesn't exist
|
100 |
-
if not os.path.exists(LEARNED_DATA_FILE):
|
101 |
-
with open(LEARNED_DATA_FILE, 'w', encoding='utf-8') as f:
|
102 |
-
json.dump({}, f, ensure_ascii=False, indent=2)
|
103 |
-
logging.info(f"Created new learned_data.json file at {LEARNED_DATA_FILE}")
|
104 |
-
except Exception as e:
|
105 |
-
logging.error(f"Failed to setup directories: {str(e)}")
|
106 |
-
raise
|
107 |
-
|
108 |
-
def load_or_create_vectorstore(self):
|
109 |
-
"""Load existing vectorstore or create a new one"""
|
110 |
-
try:
|
111 |
-
if os.path.exists(os.path.join(VECTOR_STORE_DIR, "index.faiss")):
|
112 |
-
self.vectorstore = FAISS.load_local(
|
113 |
-
VECTOR_STORE_DIR,
|
114 |
-
embeddings=self.embeddings,
|
115 |
-
allow_dangerous_deserialization=True
|
116 |
-
)
|
117 |
-
logging.info("Loaded existing vectorstore")
|
118 |
-
else:
|
119 |
-
# If no existing vectorstore, create an empty one
|
120 |
-
self.vectorstore = FAISS.from_texts(
|
121 |
-
["Initial empty index"],
|
122 |
-
self.embeddings
|
123 |
-
)
|
124 |
-
# Save the initial vectorstore
|
125 |
-
self.vectorstore.save_local(VECTOR_STORE_DIR)
|
126 |
-
logging.info("Created new vectorstore")
|
127 |
-
|
128 |
-
self.retriever = self.vectorstore.as_retriever()
|
129 |
-
except Exception as e:
|
130 |
-
logging.error(f"Failed to load or create vectorstore: {str(e)}")
|
131 |
-
raise
|
132 |
-
|
133 |
-
def setup_chain(self):
|
134 |
-
"""Set up the processing chain"""
|
135 |
-
try:
|
136 |
-
self.chain = (
|
137 |
-
{
|
138 |
-
"context": self.retriever,
|
139 |
-
"chat_history": lambda x: self.get_chat_history(),
|
140 |
-
"question": RunnablePassthrough()
|
141 |
-
}
|
142 |
-
| self.prompt
|
143 |
-
| self.model
|
144 |
-
| StrOutputParser()
|
145 |
-
)
|
146 |
-
except Exception as e:
|
147 |
-
logging.error(f"Failed to setup chain: {str(e)}")
|
148 |
-
raise
|
149 |
-
|
150 |
-
def load_learned_data(self) -> dict:
|
151 |
-
"""Load previously learned data from file"""
|
152 |
-
try:
|
153 |
-
with open(LEARNED_DATA_FILE, 'r', encoding='utf-8') as f:
|
154 |
-
return json.load(f)
|
155 |
-
except FileNotFoundError:
|
156 |
-
logging.warning(f"learned_data.json not found at {LEARNED_DATA_FILE}")
|
157 |
-
return {}
|
158 |
-
except json.JSONDecodeError:
|
159 |
-
logging.error("Error decoding learned_data.json. Creating backup and starting fresh.")
|
160 |
-
# Create backup of corrupted file
|
161 |
-
backup_file = f"{LEARNED_DATA_FILE}.backup-{datetime.now().strftime('%Y%m%d-%H%M%S')}"
|
162 |
-
os.rename(LEARNED_DATA_FILE, backup_file)
|
163 |
-
return {}
|
164 |
-
except Exception as e:
|
165 |
-
logging.error(f"Unexpected error loading learned data: {str(e)}")
|
166 |
-
return {}
|
167 |
-
|
168 |
-
def save_learned_data(self):
|
169 |
-
"""Save learned data to file"""
|
170 |
-
try:
|
171 |
-
# Create temporary file
|
172 |
-
temp_file = f"{LEARNED_DATA_FILE}.temp"
|
173 |
-
with open(temp_file, 'w', encoding='utf-8') as f:
|
174 |
-
json.dump(self.learned_data, f, ensure_ascii=False, indent=2)
|
175 |
-
|
176 |
-
# Rename temporary file to actual file
|
177 |
-
os.replace(temp_file, LEARNED_DATA_FILE)
|
178 |
-
logging.info("Successfully saved learned data")
|
179 |
-
except Exception as e:
|
180 |
-
logging.error(f"Failed to save learned data: {str(e)}")
|
181 |
-
if os.path.exists(temp_file):
|
182 |
-
os.remove(temp_file)
|
183 |
-
raise
|
184 |
-
|
185 |
-
def learn_new_information(self, information: str, source: str = "user_input") -> bool:
|
186 |
-
"""Process and store new information"""
|
187 |
-
try:
|
188 |
-
# Split the text into chunks
|
189 |
-
chunks = self.text_splitter.split_text(information)
|
190 |
-
|
191 |
-
# Add to vectorstore
|
192 |
-
self.vectorstore.add_texts(chunks)
|
193 |
-
|
194 |
-
# Save to learned data with timestamp
|
195 |
-
timestamp = datetime.now().isoformat()
|
196 |
-
if source not in self.learned_data:
|
197 |
-
self.learned_data[source] = []
|
198 |
-
|
199 |
-
self.learned_data[source].append({
|
200 |
-
"timestamp": timestamp,
|
201 |
-
"content": information
|
202 |
-
})
|
203 |
-
|
204 |
-
# Save learned data to file
|
205 |
-
self.save_learned_data()
|
206 |
-
|
207 |
-
# Save the updated vectorstore
|
208 |
-
self.vectorstore.save_local(VECTOR_STORE_DIR)
|
209 |
-
|
210 |
-
logging.info(f"Successfully learned new information from {source}")
|
211 |
-
return True
|
212 |
-
except Exception as e:
|
213 |
-
logging.error(f"Error learning new information: {str(e)}")
|
214 |
-
return False
|
215 |
-
|
216 |
def get_chat_history(self) -> str:
|
217 |
"""Format chat history for the prompt"""
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
logging.error(f"Error getting chat history: {str(e)}")
|
223 |
-
return ""
|
224 |
|
225 |
def process_response(self, response: str) -> str:
|
226 |
"""Clean up the response"""
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
# Remove single line code blocks
|
237 |
-
response = re.sub(r"`.*?`", "", response)
|
238 |
-
|
239 |
-
# Remove any remaining code-like artifacts
|
240 |
-
response = re.sub(r"//.*?$", "", response, flags=re.MULTILINE) # Remove single line comments
|
241 |
-
response = re.sub(r"/\*.*?\*/", "", response, flags=re.DOTALL) # Remove multi-line comments
|
242 |
-
response = re.sub(r"[{}<>]", "", response) # Remove brackets
|
243 |
-
response = re.sub(r"\b(java|python|class|public|private|void)\b", "", response, flags=re.IGNORECASE) # Remove programming keywords
|
244 |
-
|
245 |
-
# Clean up multiple spaces and newlines
|
246 |
-
response = re.sub(r'\s+', ' ', response)
|
247 |
-
|
248 |
-
# Final cleanup
|
249 |
-
return response.strip()
|
250 |
-
except Exception as e:
|
251 |
-
logging.error(f"Error processing response: {str(e)}")
|
252 |
-
return response.strip()
|
253 |
|
|
|
254 |
def chat(self, message: str, history: List[Tuple[str, str]]) -> str:
|
255 |
"""Process a single chat message"""
|
256 |
try:
|
257 |
-
# Check if this is a learning request
|
258 |
-
if message.lower().startswith("o'rgan:") or message.lower().startswith("learn:"):
|
259 |
-
# Extract the learning content
|
260 |
-
learning_content = message[message.find(':')+1:].strip()
|
261 |
-
if not learning_content:
|
262 |
-
return "O'rganish uchun ma'lumot kiritilmadi."
|
263 |
-
|
264 |
-
if self.learn_new_information(learning_content):
|
265 |
-
return "Yangi ma'lumot muvaffaqiyatli o'rganildi va saqlandi."
|
266 |
-
else:
|
267 |
-
return "Ma'lumotni o'rganishda xatolik yuz berdi."
|
268 |
-
|
269 |
self.memory.chat_memory.add_user_message(message)
|
270 |
response = self.chain.invoke(message)
|
271 |
clean_response = self.process_response(response)
|
272 |
|
|
|
273 |
if not clean_response or len(clean_response.split()) < 3:
|
274 |
clean_response = "Kechirasiz, savolingizni tushunolmadim. Iltimos, batafsilroq savol bering."
|
275 |
|
276 |
self.memory.chat_memory.add_ai_message(clean_response)
|
277 |
return clean_response
|
278 |
except Exception as e:
|
279 |
-
|
280 |
-
return f"Xatolik yuz berdi. Iltimos qaytadan urinib ko'ring."
|
281 |
|
282 |
def reset_chat(self) -> List[Tuple[str, str]]:
|
283 |
"""Reset the chat history"""
|
284 |
-
|
285 |
-
|
286 |
-
return []
|
287 |
-
except Exception as e:
|
288 |
-
logging.error(f"Error resetting chat: {str(e)}")
|
289 |
-
return []
|
290 |
|
|
|
291 |
def create_demo() -> gr.Interface:
|
292 |
-
|
293 |
-
|
|
|
|
|
|
|
294 |
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
|
|
304 |
)
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
clear = gr.Button("Yangi suhbat")
|
315 |
-
|
316 |
-
def respond(message, chat_history):
|
317 |
-
message = message.strip()
|
318 |
-
if not message:
|
319 |
-
return "", chat_history
|
320 |
-
|
321 |
-
bot_message = chatbot.chat(message, chat_history)
|
322 |
-
chat_history.append((message, bot_message))
|
323 |
return "", chat_history
|
324 |
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
|
|
333 |
|
334 |
demo = create_demo()
|
335 |
|
336 |
if __name__ == "__main__":
|
337 |
-
|
338 |
-
demo.launch()
|
339 |
-
except Exception as e:
|
340 |
-
logging.error(f"Failed to launch demo: {str(e)}")
|
341 |
-
raise
|
|
|
7 |
from langchain.schema.runnable import RunnablePassthrough
|
8 |
from langchain.schema.output_parser import StrOutputParser
|
9 |
from langchain.memory import ConversationBufferMemory
|
|
|
10 |
from typing import List, Tuple
|
11 |
import re
|
12 |
+
# Environment variables for API keys
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY')
|
|
|
|
|
|
|
14 |
|
15 |
+
class ChatBot:
|
16 |
def __init__(self):
|
17 |
+
# Initialize embeddings
|
18 |
+
self.embeddings = TogetherEmbeddings(
|
19 |
+
model="togethercomputer/m2-bert-80M-32k-retrieval",
|
20 |
+
together_api_key=TOGETHER_API_KEY
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
)
|
22 |
|
23 |
+
# Load the pre-created FAISS index with embeddings
|
24 |
+
self.vectorstore = FAISS.load_local(
|
25 |
+
".",
|
26 |
+
embeddings=self.embeddings,
|
27 |
+
allow_dangerous_deserialization=True # Only enable this if you trust the source of the index
|
28 |
+
)
|
29 |
+
self.retriever = self.vectorstore.as_retriever()
|
30 |
|
31 |
+
# Initialize the model
|
32 |
+
self.model = Together(
|
33 |
+
model="meta-llama/Llama-3.3-70B-Instruct-Turbo",
|
34 |
+
temperature=0.7,
|
35 |
+
max_tokens=150,
|
36 |
+
top_k=30,
|
37 |
+
together_api_key=TOGETHER_API_KEY
|
38 |
+
)
|
|
|
|
|
|
|
|
|
39 |
|
40 |
# Initialize memory
|
41 |
self.memory = ConversationBufferMemory(
|
|
|
51 |
Savol: {question}
|
52 |
Javobni faqat matn shaklida bering, kod yoki ortiqcha belgilar kiritmang."""
|
53 |
|
54 |
+
|
55 |
self.prompt = ChatPromptTemplate.from_template(self.template)
|
56 |
|
57 |
# Create the chain
|
58 |
+
self.chain = (
|
59 |
+
{
|
60 |
+
"context": self.retriever,
|
61 |
+
"chat_history": lambda x: self.get_chat_history(),
|
62 |
+
"question": RunnablePassthrough()
|
63 |
+
}
|
64 |
+
| self.prompt
|
65 |
+
| self.model
|
66 |
+
| StrOutputParser()
|
67 |
+
)
|
68 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
def get_chat_history(self) -> str:
|
70 |
"""Format chat history for the prompt"""
|
71 |
+
messages = self.memory.load_memory_variables({})["chat_history"]
|
72 |
+
return "\n".join([f"{m.type}: {m.content}" for m in messages])
|
73 |
+
|
74 |
+
import re
|
|
|
|
|
75 |
|
76 |
def process_response(self, response: str) -> str:
|
77 |
"""Clean up the response"""
|
78 |
+
unwanted_tags = ["[INST]", "[/INST]", "<s>", "</s>"]
|
79 |
+
for tag in unwanted_tags:
|
80 |
+
response = response.replace(tag, "")
|
81 |
+
|
82 |
+
# Python kod snippetlarini olib tashlash
|
83 |
+
response = re.sub(r"```.*?```", "", response, flags=re.DOTALL)
|
84 |
+
response = re.sub(r"print\(.*?\)", "", response)
|
85 |
+
|
86 |
+
return response.strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
+
|
89 |
def chat(self, message: str, history: List[Tuple[str, str]]) -> str:
|
90 |
"""Process a single chat message"""
|
91 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
self.memory.chat_memory.add_user_message(message)
|
93 |
response = self.chain.invoke(message)
|
94 |
clean_response = self.process_response(response)
|
95 |
|
96 |
+
# Agar javob to'liq bo'lmasa yoki noto'g'ri bo'lsa, qayta urinib ko'rish
|
97 |
if not clean_response or len(clean_response.split()) < 3:
|
98 |
clean_response = "Kechirasiz, savolingizni tushunolmadim. Iltimos, batafsilroq savol bering."
|
99 |
|
100 |
self.memory.chat_memory.add_ai_message(clean_response)
|
101 |
return clean_response
|
102 |
except Exception as e:
|
103 |
+
return f"Xatolik yuz berdi: {str(e)}"
|
|
|
104 |
|
105 |
def reset_chat(self) -> List[Tuple[str, str]]:
|
106 |
"""Reset the chat history"""
|
107 |
+
self.memory.clear()
|
108 |
+
return []
|
|
|
|
|
|
|
|
|
109 |
|
110 |
+
# Create the Gradio interface
|
111 |
def create_demo() -> gr.Interface:
|
112 |
+
chatbot = ChatBot()
|
113 |
+
|
114 |
+
with gr.Blocks() as demo:
|
115 |
+
gr.Markdown("""# RAG Chatbot
|
116 |
+
Beeline Uzbekistanning jismoniy shaxslar uchun tariflari haqida ma'lumotlar beruvchi bot""")
|
117 |
|
118 |
+
chatbot_interface = gr.Chatbot(
|
119 |
+
height=600,
|
120 |
+
show_copy_button=True,
|
121 |
+
)
|
122 |
+
|
123 |
+
with gr.Row():
|
124 |
+
msg = gr.Textbox(
|
125 |
+
show_label=False,
|
126 |
+
placeholder="Xabaringizni shu yerda yozing",
|
127 |
+
container=False
|
128 |
)
|
129 |
+
submit = gr.Button("Xabarni yuborish", variant="primary")
|
130 |
+
|
131 |
+
clear = gr.Button("Yangi suhbat")
|
132 |
+
|
133 |
+
def respond(message, chat_history):
|
134 |
+
# Foydalanuvchi xabarini tozalash
|
135 |
+
message = message.strip()
|
136 |
+
if not message:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
return "", chat_history
|
138 |
|
139 |
+
bot_message = chatbot.chat(message, chat_history)
|
140 |
+
chat_history.append((message, bot_message))
|
141 |
+
return "", chat_history
|
142 |
|
143 |
+
submit.click(respond, [msg, chatbot_interface], [msg, chatbot_interface])
|
144 |
+
msg.submit(respond, [msg, chatbot_interface], [msg, chatbot_interface])
|
145 |
+
clear.click(lambda: chatbot.reset_chat(), None, chatbot_interface)
|
146 |
+
|
147 |
+
return demo
|
148 |
|
149 |
demo = create_demo()
|
150 |
|
151 |
if __name__ == "__main__":
|
152 |
+
demo.launch()
|
|
|
|
|
|
|
|