Go-With-The-Flow / cut_and_drag_gui.py
fffiloni's picture
Migrated from GitHub
4d5ccae verified
from rp import *
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.widgets import Slider
from matplotlib.patches import Polygon as Polygon
import cv2
git_import('CommonSource')
import rp.git.CommonSource.noise_warp as nw
from easydict import EasyDict
def select_polygon(image):
fig, ax = plt.subplots()
ax.imshow(image)
ax.set_title("Left click to add points. Right click to undo. Close the window to finish.")
path = []
def onclick(event):
if event.button == 1: # Left click
if event.xdata is not None and event.ydata is not None:
path.append((event.xdata, event.ydata))
ax.clear()
ax.imshow(image)
ax.set_title("Left click to add points. Right click to undo. Close the window to finish.")
for i in range(len(path)):
if i > 0:
ax.plot([path[i - 1][0], path[i][0]], [path[i - 1][1], path[i][1]], "r-")
ax.plot(path[i][0], path[i][1], "ro")
if len(path) > 1:
ax.plot([path[-1][0], path[0][0]], [path[-1][1], path[0][1]], "r--")
if len(path) > 2:
polygon = Polygon(path, closed=True, alpha=0.3, facecolor="r", edgecolor="r")
ax.add_patch(polygon)
fig.canvas.draw()
elif event.button == 3 and path: # Right click
path.pop()
ax.clear()
ax.imshow(image)
ax.set_title("Left click to add points. Right click to undo. Close the window to finish.")
for i in range(len(path)):
if i > 0:
ax.plot([path[i - 1][0], path[i][0]], [path[i - 1][1], path[i][1]], "r-")
ax.plot(path[i][0], path[i][1], "ro")
if len(path) > 1:
ax.plot([path[-1][0], path[0][0]], [path[-1][1], path[0][1]], "r--")
if len(path) > 2:
polygon = Polygon(path, closed=True, alpha=0.3, facecolor="r", edgecolor="r")
ax.add_patch(polygon)
fig.canvas.draw()
cid = fig.canvas.mpl_connect("button_press_event", onclick)
plt.show()
fig.canvas.mpl_disconnect(cid)
return path
def select_polygon_and_path(image):
fig, ax = plt.subplots()
ax.imshow(image)
ax.set_title("Left click to add points. Right click to undo. Close the window to finish.")
polygon_path = []
movement_path = []
cid = fig.canvas.mpl_connect("button_press_event", onclick)
plt.show()
fig.canvas.mpl_disconnect(cid)
return polygon_path, movement_path
def select_path(image, polygon, num_frames=49):
fig, ax = plt.subplots()
plt.subplots_adjust(left=0.25, bottom=0.25)
ax.imshow(image)
ax.set_title("Left click to add points. Right click to undo. Close the window to finish.")
path = []
# Add sliders for final scale and rotation
ax_scale = plt.axes([0.25, 0.1, 0.65, 0.03])
ax_rot = plt.axes([0.25, 0.15, 0.65, 0.03])
scale_slider = Slider(ax_scale, "Final Scale", 0.1, 5.0, valinit=1)
rot_slider = Slider(ax_rot, "Final Rotation", -360, 360, valinit=0)
scales = []
rotations = []
def interpolate_transformations(n_points):
# scales = np.linspace(1, scale_slider.val, n_points)
scales = np.exp(np.linspace(0, np.log(scale_slider.val), n_points))
rotations = np.linspace(0, rot_slider.val, n_points)
return scales, rotations
def update_display():
ax.clear()
ax.imshow(image)
ax.set_title("Left click to add points. Right click to undo. Close the window to finish.")
n_points = len(path)
if n_points < 1:
fig.canvas.draw_idle()
return
# Interpolate scales and rotations over the total number of points
scales[:], rotations[:] = interpolate_transformations(n_points)
origin = np.array(path[0])
for i in range(n_points):
ax.plot(path[i][0], path[i][1], "bo")
if i > 0:
ax.plot([path[i - 1][0], path[i][0]], [path[i - 1][1], path[i][1]], "b-")
# Apply transformation to the polygon
transformed_polygon = apply_transformation(np.array(polygon), scales[i], rotations[i], origin)
# Offset polygon to the current point relative to the first point
position_offset = np.array(path[i]) - origin
transformed_polygon += position_offset
mpl_poly = Polygon(
transformed_polygon,
closed=True,
alpha=0.3,
facecolor="r",
edgecolor="r",
)
ax.add_patch(mpl_poly)
fig.canvas.draw_idle()
def onclick(event):
if event.inaxes != ax:
return
if event.button == 1: # Left click
path.append((event.xdata, event.ydata))
update_display()
elif event.button == 3 and path: # Right click
path.pop()
update_display()
def on_slider_change(val):
update_display()
scale_slider.on_changed(on_slider_change)
rot_slider.on_changed(on_slider_change)
scales, rotations = [], []
cid_click = fig.canvas.mpl_connect("button_press_event", onclick)
plt.show()
fig.canvas.mpl_disconnect(cid_click)
# Final interpolation after the window is closed
n_points = num_frames
if n_points > 0:
scales, rotations = interpolate_transformations(n_points)
rotations = [-x for x in rotations]
path = as_numpy_array(path)
path = as_numpy_array([linterp(path, i) for i in np.linspace(0, len(path) - 1, num=n_points)])
return path, scales, rotations
def animate_polygon(image, polygon, path, scales, rotations,interp=cv2.INTER_LINEAR):
frames = []
transformed_polygons = []
origin = np.array(path[0])
h, w = image.shape[:2]
for i in eta(range(len(path)), title="Creating frames for this layer..."):
# Compute the affine transformation matrix
theta = np.deg2rad(rotations[i])
scale = scales[i]
a11 = scale * np.cos(theta)
a12 = -scale * np.sin(theta)
a21 = scale * np.sin(theta)
a22 = scale * np.cos(theta)
# Compute translation components
tx = path[i][0] - (a11 * origin[0] + a12 * origin[1])
ty = path[i][1] - (a21 * origin[0] + a22 * origin[1])
M = np.array([[a11, a12, tx], [a21, a22, ty]])
# Apply the affine transformation to the image
warped_image = cv2.warpAffine(
image,
M,
(w, h),
flags=interp,
borderMode=cv2.BORDER_CONSTANT,
borderValue=(0, 0, 0),
)
# Transform the polygon points
polygon_np = np.array(polygon)
ones = np.ones(shape=(len(polygon_np), 1))
points_ones = np.hstack([polygon_np, ones])
transformed_polygon = M.dot(points_ones.T).T
transformed_polygons.append(transformed_polygon)
# Create a mask for the transformed polygon
mask = np.zeros((h, w), dtype=np.uint8)
cv2.fillPoly(mask, [np.int32(transformed_polygon)], 255)
# Extract the polygon area from the warped image
rgba_image = cv2.cvtColor(warped_image, cv2.COLOR_BGR2BGRA)
alpha_channel = np.zeros((h, w), dtype=np.uint8)
alpha_channel[mask == 255] = 255
rgba_image[:, :, 3] = alpha_channel
# Set areas outside the polygon to transparent
rgba_image[mask == 0] = (0, 0, 0, 0)
frames.append(rgba_image)
# return gather_vars("frames transformed_polygons")
return EasyDict(frames=frames,transformed_polygons=transformed_polygons)
def apply_transformation(polygon, scale, rotation, origin):
# Translate polygon to origin
translated_polygon = polygon - origin
# Apply scaling
scaled_polygon = translated_polygon * scale
# Apply rotation
theta = np.deg2rad(rotation)
rotation_matrix = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]])
rotated_polygon = np.dot(scaled_polygon, rotation_matrix)
# Translate back
final_polygon = rotated_polygon + origin
return final_polygon
# def cogvlm_caption_video(video_path, prompt="Please describe this video in detail."):
# import rp.web_evaluator as wev
#
# client = wev.Client("100.113.27.133")
# result = client.evaluate("run_captioner(x,prompt=prompt)", x=video_path, prompt=prompt)
# if result.errored:
# raise result.error
# return result.value
if __name__ == "__main__":
fansi_print(big_ascii_text("Go With The Flow!"), "yellow green", "bold")
image_path = input_conditional(
fansi("First Frame: Enter Image Path or URL", "blue cyan", "italic bold underlined"),
lambda x: is_a_file(x.strip()) or is_valid_url(x.strip()),
).strip()
print("Using path: " + fansi_highlight_path(image_path))
if is_video_file(image_path):
fansi_print('Video path was given. Using first frame as image.')
image=load_video(image_path,length=1)[0]
else:
image = load_image(image_path, use_cache=True)
image = resize_image_to_fit(image, height=1440, allow_growth=False)
rp.fansi_print("PRO TIP: Use this website to help write your captions: https://huggingface.co/spaces/THUDM/CogVideoX-5B-Space", 'blue cyan')
prompt=input(fansi('Input the video caption >>> ','blue cyan','bold'))
SCALE_FACTOR=1
#Adjust resolution to 720x480: resize then center-crop
HEIGHT=480*SCALE_FACTOR
WIDTH=720*SCALE_FACTOR
image = resize_image_to_hold(image,height=HEIGHT,width=WIDTH)
image = crop_image(image, height=HEIGHT,width=WIDTH, origin='center')
title = input_default(
fansi("Enter a title: ", "blue cyan", "italic bold underlined"),
get_file_name(
image_path,
include_file_extension=False,
),
)
output_folder=make_directory(get_unique_copy_path(title))
print("Output folder: " + fansi_highlight_path(output_folder))
fansi_print("How many layers?", "blue cyan", "italic bold underlined"),
num_layers = input_integer(
minimum=1,
)
layer_videos = []
layer_polygons = []
layer_first_frame_masks = []
layer_noises = []
for layer_num in range(num_layers):
layer_noise=np.random.randn(HEIGHT,WIDTH,18).astype(np.float32)
fansi_print(f'You are currently working on layer #{layer_num+1} of {num_layers}','yellow orange','bold')
if True or not "polygon" in vars() or input_yes_no("New Polygon?"):
polygon = select_polygon(image)
if True or not "animation" in vars() or input_yes_no("New Animation?"):
animation = select_path(image, polygon)
animation_output = animate_polygon(image, polygon, *animation)
noise_output_1 = as_numpy_array(animate_polygon(layer_noise[:,:,3*0:3*1], polygon, *animation, interp=cv2.INTER_NEAREST).frames)
noise_output_2 = as_numpy_array(animate_polygon(layer_noise[:,:,3*1:3*2], polygon, *animation, interp=cv2.INTER_NEAREST).frames)
noise_output_3 = as_numpy_array(animate_polygon(layer_noise[:,:,3*2:3*3], polygon, *animation, interp=cv2.INTER_NEAREST).frames)
noise_output_4 = as_numpy_array(animate_polygon(layer_noise[:,:,3*3:3*4], polygon, *animation, interp=cv2.INTER_NEAREST).frames)
noise_output_5 = as_numpy_array(animate_polygon(layer_noise[:,:,3*4:3*5], polygon, *animation, interp=cv2.INTER_NEAREST).frames)
noise_output_6 = as_numpy_array(animate_polygon(layer_noise[:,:,3*5:3*6], polygon, *animation, interp=cv2.INTER_NEAREST).frames)
noise_warp_output = np.concatenate(
[
noise_output_1[:,:,:,:3],
noise_output_2[:,:,:,:3],
noise_output_3[:,:,:,:3],
noise_output_4[:,:,:,:3],
noise_output_5[:,:,:,:3],
noise_output_6[:,:,:,:1],
],
axis=3,#THWC
)
frames, transformed_polygons = destructure(animation_output)
mask = get_image_alpha(frames[0]) > 0
layer_polygons.append(transformed_polygons)
layer_first_frame_masks.append(mask)
layer_videos.append(frames)
layer_noises.append(noise_warp_output)
if True or input_yes_no("Inpaint background?"):
total_mask = sum(layer_first_frame_masks).astype(bool)
background = cv_inpaint_image(image, mask=total_mask)
else:
background = "https://t3.ftcdn.net/jpg/02/76/96/64/360_F_276966430_HsEI96qrQyeO4wkcnXtGZOm0Qu4TKCgR.jpg"
background = load_image(background, use_cache=True)
background = cv_resize_image(background, get_image_dimensions(image))
background=as_rgba_image(background)
###
output_frames = [
overlay_images(
background,
*frame_layers,
)
for frame_layers in eta(list_transpose(layer_videos),title=fansi("Compositing all frames of the video...",'green','bold'))
]
output_frames=as_numpy_array(output_frames)
output_video_file=save_video_mp4(output_frames, output_folder+'/'+title + ".mp4", video_bitrate="max")
output_mask_file = save_video_mp4(
[
sum([get_image_alpha(x) for x in layers])
for layers in list_transpose(layer_videos)
],
output_folder + "/" + title + "_mask.mp4",
video_bitrate="max",
)
###
fansi_print("Warping noise...",'yellow green','bold italic')
output_noises = np.random.randn(1,HEIGHT,WIDTH,16)
output_noises=np.repeat(output_noises,49,axis=0)
for layer_num in range(num_layers):
fansi_print(f'Warping noise for layer #{layer_num+1} of {num_layers}','green','bold')
for frame in eta(range(49),title='frame number'):
noise_mask = get_image_alpha(layer_videos[layer_num][frame])[:,:,None]>0
noise_video_layer = layer_noises[layer_num][frame]
output_noises[frame]*=(noise_mask==0)
output_noises[frame]+=noise_video_layer*noise_mask
#display_image((noise_mask * noise_video_layer)[:,:,:3])
display_image(output_noises[frame][:,:,:3]/5+.5)
import einops
import torch
torch_noises=torch.tensor(output_noises)
torch_noises=einops.rearrange(torch_noises,'F H W C -> F C H W')
#
small_torch_noises=[]
for i in eta(range(49),title='Regaussianizing'):
torch_noises[i]=nw.regaussianize(torch_noises[i])[0]
small_torch_noise=nw.resize_noise(torch_noises[i],(480//8,720//8))
small_torch_noises.append(small_torch_noise)
#display_image(as_numpy_image(small_torch_noise[:3])/5+.5)
display_image(as_numpy_image(torch_noises[i,:3])/5+.5)
small_torch_noises=torch.stack(small_torch_noises)#DOWNSAMPLED NOISE FOR CARTRIDGE!
###
cartridge={}
cartridge['instance_noise']=small_torch_noises.bfloat16()
cartridge['instance_video']=(as_torch_images(output_frames)*2-1).bfloat16()
cartridge['instance_prompt']=prompt
output_cartridge_file=object_to_file(cartridge, output_folder + "/" + title + "_cartridge.pkl")
###
output_polygons_file=output_folder+'/'+'polygons.npy'
polygons=as_numpy_array(layer_polygons)
np.save(output_polygons_file,polygons)
print()
print(fansi('Saved outputs:','green','bold'))
print(fansi(' - Saved video: ','green','bold'),fansi_highlight_path(get_relative_path(output_video_file)))
print(fansi(' - Saved masks: ','green','bold'),fansi_highlight_path(get_relative_path(output_mask_file)))
print(fansi(' - Saved shape: ','green','bold'),fansi_highlight_path(output_polygons_file))
print(fansi(' - Saved cartridge: ','green','bold'),fansi_highlight_path(output_cartridge_file))
print("Press CTRL+C to exit")
display_video(video_with_progress_bar(output_frames), loop=True)