Spaces:
Runtime error
Runtime error
import math | |
import os | |
import json | |
import random | |
import torch | |
# from torchvision.transforms.functional import resize | |
import torch.utils.data | |
import numpy as np | |
import librosa | |
from librosa.util import normalize | |
from scipy.io.wavfile import read | |
from librosa.filters import mel as librosa_mel_fn | |
# from speechbrain.lobes.models.FastSpeech2 import mel_spectogram | |
MAX_WAV_VALUE = 32768.0 | |
def load_wav(full_path): | |
sampling_rate, data = read(full_path) | |
return data, sampling_rate | |
def dynamic_range_compression(x, C=1, clip_val=1e-5): | |
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C) | |
def dynamic_range_decompression(x, C=1): | |
return np.exp(x) / C | |
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): | |
return torch.log(torch.clamp(x, min=clip_val) * C) | |
def dynamic_range_decompression_torch(x, C=1): | |
return torch.exp(x) / C | |
def spectral_normalize_torch(magnitudes): | |
output = dynamic_range_compression_torch(magnitudes) | |
return output | |
def spectral_de_normalize_torch(magnitudes): | |
output = dynamic_range_decompression_torch(magnitudes) | |
return output | |
mel_basis = {} | |
hann_window = {} | |
def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False): | |
# if torch.min(y) < -1.: | |
# print('min value is ', torch.min(y)) | |
# if torch.max(y) > 1.: | |
# print('max value is ', torch.max(y)) | |
global mel_basis, hann_window | |
if fmax not in mel_basis: | |
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax) | |
mel_basis[str(fmax)+'_'+str(y.device)] = torch.from_numpy(mel).float().to(y.device) | |
hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device) | |
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect') | |
y = y.squeeze(1) | |
# complex tensor as default, then use view_as_real for future pytorch compatibility | |
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[str(y.device)], | |
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=True) | |
spec = torch.view_as_real(spec) | |
spec = torch.sqrt(spec.pow(2).sum(-1)+(1e-9)) | |
spec = torch.matmul(mel_basis[str(fmax)+'_'+str(y.device)], spec) | |
spec = spectral_normalize_torch(spec) | |
return spec | |
def get_dataset_filelist(a): | |
training_files =[] | |
validation_files =[] | |
total_files = 0 | |
audio_dir = "dataset/audio" | |
with open("filelists/train.txt") as f: | |
training_files = f.readlines() | |
for i, line in enumerate(training_files): | |
spk, basename = line.strip().split('|') | |
training_files[i] = f"{audio_dir}/{spk}/{basename}.wav" | |
with open("filelists/val.txt") as f: | |
validation_files = f.readlines() | |
for i, line in enumerate(validation_files): | |
spk, basename = line.strip().split('|') | |
validation_files[i] = f"{audio_dir}/{spk}/{basename}.wav" | |
random.seed(1234) | |
random.shuffle(training_files) | |
random.shuffle(validation_files) | |
return training_files, validation_files | |
class MelDataset(torch.utils.data.Dataset): | |
def __init__(self, training_files, segment_size, n_fft, num_mels, | |
hop_size, win_size, sampling_rate, fmin, fmax, shuffle=True, n_cache_reuse=1, | |
device=None, fmax_loss=None, use_aug=False): | |
self.audio_files = training_files | |
random.seed(1234) | |
if shuffle: | |
random.shuffle(self.audio_files) | |
self.segment_size = segment_size | |
self.sampling_rate = sampling_rate | |
self.n_fft = n_fft | |
self.num_mels = num_mels | |
self.hop_size = hop_size | |
self.win_size = win_size | |
self.fmin = fmin | |
self.fmax = fmax | |
self.fmax_loss = fmax_loss | |
self.cached_wav = None | |
self.n_cache_reuse = n_cache_reuse | |
self._cache_ref_count = 0 | |
self.device = device | |
self.use_aug = use_aug | |
with open("filelists/spk2id.json") as f: | |
self.spk2id = json.load(f) | |
def __getitem__(self, index): | |
filename = self.audio_files[index] | |
if self._cache_ref_count == 0: | |
audio, sampling_rate = load_wav(filename) | |
audio = audio / MAX_WAV_VALUE | |
audio = normalize(audio) * 0.95 | |
self.cached_wav = audio | |
if sampling_rate != self.sampling_rate: | |
raise ValueError("{} SR doesn't match target {} SR".format( | |
sampling_rate, self.sampling_rate)) | |
self._cache_ref_count = self.n_cache_reuse | |
else: | |
audio = self.cached_wav | |
self._cache_ref_count -= 1 | |
audio = torch.FloatTensor(audio) | |
audio = audio.unsqueeze(0) | |
if audio.size(1) >= self.segment_size: | |
max_audio_start = audio.size(1) - self.segment_size | |
audio_start = random.randint(0, max_audio_start) | |
audio = audio[:, audio_start:audio_start+self.segment_size] | |
else: | |
audio = torch.nn.functional.pad(audio, (0, self.segment_size - audio.size(1)), 'constant') | |
mel = mel_spectrogram(audio, self.n_fft, self.num_mels, | |
self.sampling_rate, self.hop_size, self.win_size, self.fmin, self.fmax, | |
center=False) | |
mel_loss = mel_spectrogram(audio, self.n_fft, self.num_mels, | |
self.sampling_rate, self.hop_size, self.win_size, self.fmin, self.fmax_loss, | |
center=False) | |
spk_path = filename.replace("audio", "spk").replace(".wav", ".npy") | |
spk_emb = torch.from_numpy(np.load(spk_path)) # (256) | |
spk = filename.split("/")[-2] | |
spk_id = self.spk2id[spk] | |
spk_id = torch.LongTensor([spk_id]) | |
if not self.use_aug: | |
return (mel.squeeze(), audio.squeeze(0), filename, mel_loss.squeeze(), spk_emb, spk_id) | |
mel_aug, _ = mel_spectogram( | |
audio=audio.squeeze(), | |
sample_rate=16000, | |
hop_length=256, | |
win_length=1024, | |
n_mels=80, | |
n_fft=1024, | |
f_min=0.0, | |
f_max=8000.0, | |
power=1, | |
normalized=False, | |
min_max_energy_norm=True, | |
norm="slaney", | |
mel_scale="slaney", | |
compression=True | |
) | |
mel_aug = self.resize_mel(mel_aug.unsqueeze(0)).squeeze(0) | |
return (mel_aug.squeeze(), mel.squeeze(), audio.squeeze(0), filename, mel_loss.squeeze(), spk_emb, spk_id) | |
def __len__(self): | |
return len(self.audio_files) | |
def resize_mel(self, mel): | |
ratio = 0.85 + 0.3 * torch.rand(1) # 0.85 ~ 1.15 | |
height = int(mel.size(-2) * ratio) | |
width = mel.size(-1) | |
mel_r = resize(mel, (height, width), antialias=True) | |
if height >= mel.size(-2): | |
mel_r = mel_r[:, :mel.size(-2), :] | |
else: | |
pad = mel_r[:, -1:, :].repeat(1, mel.size(-2) - height, 1) | |
pad += torch.randn_like(pad) / 1e3 | |
mel_r = torch.cat((mel_r, pad), 1) | |
return mel_r | |