Spaces:
Sleeping
Sleeping
import os | |
import json | |
import math | |
import torch | |
import torch.nn.functional as F | |
import librosa | |
import numpy as np | |
import soundfile as sf | |
import gradio as gr | |
import openvino as ov | |
from env import AttrDict | |
from meldataset import mel_spectrogram, MAX_WAV_VALUE | |
from stft import TorchSTFT | |
# files | |
hpfile = "config_v1_16k.json" | |
g1path = "exp/g1.xml" | |
g2path = "exp/g2.xml" | |
spk2id_path = "filelists/spk2id.json" | |
f0_stats_path = "filelists/f0_stats.json" | |
spk_stats_path = "filelists/spk_stats.json" | |
spk_emb_dir = "dataset/spk" | |
spk_wav_dir = "dataset/audio" | |
# load config | |
with open(hpfile) as f: | |
data = f.read() | |
json_config = json.loads(data) | |
h = AttrDict(json_config) | |
# load models | |
core = ov.Core() | |
g1 = core.read_model(model=g1path) | |
g1 = core.compile_model(model=g1, device_name="CPU") | |
g2 = core.read_model(model=g2path) | |
g2 = core.compile_model(model=g2, device_name="CPU") | |
stft = TorchSTFT(filter_length=h.gen_istft_n_fft, hop_length=h.gen_istft_hop_size, win_length=h.gen_istft_n_fft) | |
# load stats | |
with open(spk2id_path) as f: | |
spk2id = json.load(f) | |
with open(f0_stats_path) as f: | |
f0_stats = json.load(f) | |
with open(spk_stats_path) as f: | |
spk_stats = json.load(f) | |
# tune f0 | |
threshold = 10 | |
step = (math.log(1100) - math.log(50)) / 256 | |
def tune_f0(initial_f0, i): | |
if i == 0: | |
return initial_f0 | |
voiced = initial_f0 > threshold | |
initial_lf0 = np.log(initial_f0) | |
lf0 = initial_lf0 + step * i | |
f0 = np.exp(lf0) | |
f0 = np.where(voiced, f0, initial_f0) | |
return f0 | |
# infer | |
def infer(wav, mel, spk_emb, spk_id, f0_mean_tgt): | |
# g1 | |
out = g1([wav, mel, spk_emb, spk_id, f0_mean_tgt]) | |
x = out[g1.output(0)] | |
har_source = out[g1.output(1)] | |
# stft | |
har_source = torch.from_numpy(har_source) | |
har_spec, har_phase = stft.transform(har_source) | |
har_spec, har_phase = har_spec.numpy(), har_phase.numpy() | |
# g2 | |
out = g2([x, har_spec, har_phase]) | |
spec = out[g2.output(0)] | |
phase = out[g2.output(1)] | |
# istft | |
spec, phase = torch.from_numpy(spec), torch.from_numpy(phase) | |
y = stft.inverse(spec, phase) | |
return y | |
# convert function | |
def convert(tgt_spk, src_wav, f0_shift=0): | |
tgt_ref = spk_stats[tgt_spk]["best_spk_emb"] | |
tgt_emb = f"{spk_emb_dir}/{tgt_spk}/{tgt_ref}.npy" | |
with torch.no_grad(): | |
# tgt | |
spk_id = spk2id[tgt_spk] | |
spk_id = np.array([spk_id], dtype=np.int64)[None, :] | |
spk_emb = np.load(tgt_emb)[None, :] | |
f0_mean_tgt = f0_stats[tgt_spk]["mean"] | |
f0_mean_tgt = np.array([f0_mean_tgt], dtype=np.float32)[None, :] | |
f0_mean_tgt = tune_f0(f0_mean_tgt, f0_shift) | |
# src | |
wav, sr = librosa.load(src_wav, sr=16000) | |
wav = wav[None, :] | |
mel = mel_spectrogram(torch.from_numpy(wav), h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size, h.fmin, h.fmax).numpy() | |
# cvt | |
y = infer(wav, mel, spk_emb, spk_id, f0_mean_tgt) | |
audio = y.squeeze() | |
audio = audio / torch.max(torch.abs(audio)) * 0.95 | |
audio = audio * MAX_WAV_VALUE | |
audio = audio.cpu().numpy().astype('int16') | |
sf.write("out.wav", audio, h.sampling_rate, "PCM_16") | |
out_wav = "out.wav" | |
return out_wav | |
# change spk | |
def change_spk(tgt_spk): | |
tgt_ref = spk_stats[tgt_spk]["best_spk_emb"] | |
tgt_wav = f"{spk_wav_dir}/{tgt_spk}/{tgt_ref}.wav" | |
return tgt_wav | |
# interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# PitchVC-vino") | |
gr.Markdown("Gradio Demo for PitchVC with OpenVINO on CPU. ([Github Repo](https://github.com/OlaWod/PitchVC))") | |
with gr.Row(): | |
with gr.Column(): | |
tgt_spk = gr.Dropdown(choices=spk2id.keys(), type="value", label="Target Speaker") | |
ref_audio = gr.Audio(label="Reference Audio", type='filepath') | |
src_audio = gr.Audio(label="Source Audio", type='filepath') | |
f0_shift = gr.Slider(minimum=-30, maximum=30, value=0, step=1, label="F0 Shift") | |
with gr.Column(): | |
out_audio = gr.Audio(label="Output Audio", type='filepath') | |
submit = gr.Button(value="Submit") | |
tgt_spk.change(fn=change_spk, inputs=[tgt_spk], outputs=[ref_audio]) | |
submit.click(convert, [tgt_spk, src_audio, f0_shift], [out_audio]) | |
examples = gr.Examples( | |
examples=[["p225", 'dataset/audio/p226/p226_341.wav', 0], | |
["p226", 'dataset/audio/p225/p225_220.wav', -5]], | |
inputs=[tgt_spk, src_audio, f0_shift]) | |
demo.launch() | |