import gradio as gr from huggingface_hub import InferenceClient """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient( base_url="https://huggingface.co/api/integrations/dgx/v1" # api_key="..." # Uncomment and use your actual API key here if required ) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, model, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, model=model, #"meta-llama/Meta-Llama-3.1-8B-Instruct", max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content if token: response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ # List of model IDs model_options = [ "meta-llama/Meta-Llama-3.1-8B-Instruct", "meta-llama/Meta-Llama-3.1-70B-Instruct", "meta-llama/Meta-Llama-3.1-405B-Instruct-FP8", "meta-llama/Meta-Llama-3-8B-Instruct", "meta-llama/Meta-Llama-3-70B-Instruct", "mistralai/Mistral-7B-Instruct-v0.3", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mixtral-8x22B-Instruct-v0.1", ] demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), gr.Dropdown(choices=model_options, value=model_options[0], label="Model"), # Dropdown for model selection ], ) if __name__ == "__main__": demo.launch()