|
import torch |
|
import torch.nn as nn |
|
|
|
class BasicBlock(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__(self, in_channels, out_channels, stride=1, downsample=None): |
|
super(BasicBlock, self).__init__() |
|
|
|
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(out_channels) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) |
|
self.bn2 = nn.BatchNorm2d(out_channels) |
|
self.downsample = downsample |
|
|
|
def forward(self, x): |
|
identity = x |
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
out = self.relu(out) |
|
return out |
|
|
|
class ResNet(nn.Module): |
|
def __init__(self, block, layers, num_classes=1000): |
|
super(ResNet, self).__init__() |
|
self.in_channels = 64 |
|
|
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) |
|
self.bn1 = nn.BatchNorm2d(64) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
|
|
self.layer1 = self._make_layer(block, 64, layers[0]) |
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) |
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=2) |
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=2) |
|
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) |
|
self.fc = nn.Linear(512 * block.expansion, num_classes) |
|
|
|
def _make_layer(self, block, out_channels, blocks, stride=1): |
|
downsample = None |
|
|
|
if stride != 1 or self.in_channels != out_channels * block.expansion: |
|
downsample = nn.Sequential( |
|
nn.Conv2d(self.in_channels, out_channels * block.expansion, kernel_size=1, stride=stride, bias=False), |
|
nn.BatchNorm2d(out_channels * block.expansion), |
|
) |
|
|
|
layers = [] |
|
layers.append(block(self.in_channels, out_channels, stride, downsample)) |
|
self.in_channels = out_channels * block.expansion |
|
for _ in range(1, blocks): |
|
layers.append(block(self.in_channels, out_channels)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
x = self.maxpool(x) |
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.layer4(x) |
|
x = self.avgpool(x) |
|
x = torch.flatten(x, 1) |
|
x = self.fc(x) |
|
return x |
|
|
|
def resnet50(): |
|
return ResNet(BasicBlock, [3, 4, 6, 3]) |
|
|