Project-1 / app.py
Maryam-1's picture
Update app.py
69ff9d1
# app.py
import subprocess
# Install dependencies
subprocess.run(["pip", "install", "-r", "requirements.txt"])
# Rest of your code
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
# Load the model from Hugging Face Model Hub
model_name = "SamLowe/roberta-base-go_emotions"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
# Define emotion labels used by the model
emotion_labels = ["admiration", "amusement", "anger", "annoyance", "approval",
"caring", "confusion", "curiosity", "desire", "disappointment",
"disapproval", "disgust", "embarrassment", "excitement",
"fear", "gratitude", "grief", "joy", "love", "nervousness",
"optimism", "pride", "realization", "relief", "remorse",
"sadness", "surprise", "neutral"]
def predict_emotion(text):
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
predicted_class = logits.argmax().item()
predicted_emotion = emotion_labels[predicted_class]
return predicted_emotion # Return the predicted emotion directly
iface = gr.Interface(
fn=predict_emotion,
inputs=gr.Textbox(),
outputs="text",
live=True,
title="Emotion Prediction",
description="Enter a sentence for emotion prediction.",
)
iface.launch()