|
import gradio as gr |
|
import numpy as np |
|
from PIL import Image, ImageEnhance |
|
from ultralytics import YOLO |
|
import cv2 |
|
|
|
|
|
model_path = "./best.pt" |
|
modelY = YOLO(model_path) |
|
modelY.to('cpu') |
|
|
|
|
|
def preprocessing(image): |
|
if image.mode != 'RGB': |
|
image = image.convert('RGB') |
|
image = ImageEnhance.Sharpness(image).enhance(2.0) |
|
image = ImageEnhance.Contrast(image).enhance(1.5) |
|
image = ImageEnhance.Brightness(image).enhance(0.8) |
|
width = 448 |
|
aspect_ratio = image.height / image.width |
|
height = int(width * aspect_ratio) |
|
return image.resize((width, height)) |
|
|
|
|
|
def detect_and_crop_document(image): |
|
image_np = np.array(image) |
|
results = modelY(image_np, conf=0.80, device='cpu') |
|
cropped_images = [] |
|
predictions = [] |
|
|
|
for result in results: |
|
for box in result.boxes: |
|
x1, y1, x2, y2 = map(int, box.xyxy[0]) |
|
conf = int(box.conf[0] * 100) |
|
cls = int(box.cls[0]) |
|
class_name = modelY.names[cls].capitalize() |
|
cropped_image_np = image_np[y1:y2, x1:x2] |
|
cropped_image = Image.fromarray(cropped_image_np) |
|
cropped_images.append(cropped_image) |
|
predictions.append(f"Detected: STNK {class_name} -- (Confidence: {conf}%)") |
|
|
|
if not cropped_images: |
|
return None, "No document detected" |
|
return cropped_images, predictions |
|
|
|
|
|
def process_image(image): |
|
preprocessed_image = preprocessing(image) |
|
cropped_images, predictions = detect_and_crop_document(preprocessed_image) |
|
|
|
if cropped_images: |
|
return cropped_images, '\n'.join(predictions) |
|
return None, "No document detected" |
|
|
|
with gr.Blocks(css=".gr-button {background-color: #4caf50; color: white; font-size: 16px; padding: 10px 20px; border-radius: 8px;}") as demo: |
|
gr.Markdown( |
|
""" |
|
<h1 style="text-align: center; color: #4caf50;">π License Registration Classification</h1> |
|
<p style="text-align: center; font-size: 18px;">Upload an image and let the YOLO model detect and crop license documents automatically.</p> |
|
""" |
|
) |
|
with gr.Row(): |
|
with gr.Column(scale=1, min_width=300): |
|
input_image = gr.Image(type="pil", label="Upload License Image", interactive=True) |
|
with gr.Row(): |
|
clear_btn = gr.Button("Clear") |
|
submit_btn = gr.Button("Detect Document") |
|
with gr.Column(scale=2): |
|
output_image = gr.Gallery(label="Cropped Documents", interactive=False) |
|
output_text = gr.Textbox(label="Detection Result", interactive=False) |
|
|
|
submit_btn.click(process_image, inputs=input_image, outputs=[output_image, output_text]) |
|
clear_btn.click(lambda: (None, ""), outputs=[output_image, output_text]) |
|
|
|
demo.launch() |