__import__('pysqlite3') import sys sys.modules['sqlite3'] = sys.modules.pop('pysqlite3') import os import time from uuid import uuid4 from langchain_openai import ChatOpenAI from langchain_community.embeddings.fastembed import FastEmbedEmbeddings from langchain.chains import create_retrieval_chain from langchain_core.tools import tool from utils.preprocess import load_data, split_data, upsert_chromadb from utils.prebuilt_chain import history_aware_retriever, documents_retriever import streamlit as st db_name = "chroma" # default name for Chromadb st.set_page_config(page_title="RAG Demo App") st.title("Demo Retrieval Augmented Generation With LanghChain & Chroma") @st.cache_resource def load_model(api_key): """cached llm and embedding model""" if st.session_state.provider == "OpenAI": return ChatOpenAI(model="gpt-4o-mini", temperature=0.3, api_key=api_key) elif st.session_state.provider == "Groq": return ChatOpenAI(model="qwen-2.5-32b", temperature=0.3, api_key=api_key, base_url="https://api.groq.com/openai/v1") @st.cache_resource def load_embedding(): st.session_state.embedding = FastEmbedEmbeddings(model_name="jinaai/jina-embeddings-v2-base-de", batch_size=64) def inputs(): """Input fields for user interaction""" with st.sidebar: st.session_state.provider = st.radio("Pilih model LLM", ["OpenAI", "Groq"]) st.session_state.api_key = st.text_input("Masukkan API Key", type="password") os.environ["OPENAI_API_KEY"] = st.session_state.api_key st.session_state.chroma_collection_name = st.text_input("Chroma Collection Name") st.session_state.source_docs = st.file_uploader("Unggah file PDF", type=["pdf"], accept_multiple_files=True) st.button("Proses Dokumen", on_click=process_data) def process_data(): """Main function to process data""" if not st.session_state.api_key or not st.session_state.chroma_collection_name or not st.session_state.source_docs: st.error("Tolong masukan API key, Chroma collection name, dan dokumen yang diperlukan!!") else: with st.spinner("📚 Memproses dokumen..."): loaded_docs = load_data(st.session_state.source_docs) splitted_docs = split_data(loaded_docs) idx = [str(uuid4()) for _ in range(len(splitted_docs))] st.session_state.vector_store = upsert_chromadb(splitted_docs, st.session_state.embedding, idx, st.session_state.chroma_collection_name, db_name) msg = st.empty() msg.success("Dokumen berhasil diproses!") time.sleep(3) msg.empty() # Main retriever @tool(response_format="content_and_artifact") def retrieve(query: str): """Retrieve information related to a query. Args: query: The user's query. """ retrieved_docs = st.session_state.vector_store.similarity_search(query, k=6) keys = ["author", "creator", "page", "source", "start_index", "total_pages"] serialized = "\n\n".join( (f"Source: {[{key: doc.metadata.get(key)} for key in keys]}\n" f"Content: {doc.page_content}") for doc in retrieved_docs ) return serialized, retrieved_docs def generate(query): """Generate a response to the user's query.""" # Dummy retriever. retriever = st.session_state.vector_store.as_retriever(search_kwargs={"k" : 1}) # Create a RAG chain using the history-aware retriever and the document-retriever. history_retriever = history_aware_retriever(st.session_state.llm, retriever) question_answer_chain = documents_retriever(st.session_state.llm) rag_chain = create_retrieval_chain(history_retriever, question_answer_chain) # Usage: response = rag_chain.invoke({"input": query, "chat_history" : st.session_state.messages, "context" : retrieve.invoke(query)}) st.session_state.messages.append(query) st.session_state.messages.append(response["answer"]) return response["answer"] if __name__ == "__main__": os.makedirs(db_name, exist_ok=True) # This directory is used to store persistent files from Chromadb inputs() st.session_state.llm = load_model(os.getenv("OPENAI_API_KEY")) load_embedding() if "messages" not in st.session_state: st.session_state.messages = [] if st.session_state.messages: st.chat_message('human').write(st.session_state.messages[-2]) st.chat_message('ai').write(st.session_state.messages[-1]) query = st.chat_input("Masukkan Prompt") if query: st.chat_message("human").write(query) response = generate(query) st.chat_message("ai").write(response)