|
__import__('pysqlite3')
|
|
import sys
|
|
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
|
|
|
|
import os
|
|
import time
|
|
from uuid import uuid4
|
|
|
|
from langchain_openai import ChatOpenAI
|
|
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings
|
|
|
|
from langchain.chains import create_retrieval_chain
|
|
from langchain_core.tools import tool
|
|
|
|
from utils.preprocess import load_data, split_data, upsert_chromadb
|
|
from utils.prebuilt_chain import history_aware_retriever, documents_retriever
|
|
|
|
import streamlit as st
|
|
|
|
db_name = "chroma"
|
|
|
|
st.set_page_config(page_title="RAG Demo App")
|
|
st.title("Demo Retrieval Augmented Generation With LanghChain & Chroma")
|
|
|
|
@st.cache_resource
|
|
def load_model(api_key):
|
|
"""cached llm and embedding model"""
|
|
if st.session_state.provider == "OpenAI":
|
|
return ChatOpenAI(model="gpt-4o-mini", temperature=0.3, api_key=api_key)
|
|
elif st.session_state.provider == "Groq":
|
|
return ChatOpenAI(model="llama-3.1-8b-instant", temperature=0.3, api_key=api_key, base_url="https://api.groq.com/openai/v1")
|
|
|
|
@st.cache_resource
|
|
def load_embedding():
|
|
st.session_state.embedding = FastEmbedEmbeddings(model_name="jinaai/jina-embeddings-v2-base-de",
|
|
batch_size=64)
|
|
|
|
def inputs():
|
|
"""Input fields for user interaction"""
|
|
with st.sidebar:
|
|
st.session_state.provider = st.radio("Pilih model LLM", ["OpenAI", "Groq"])
|
|
|
|
st.session_state.api_key = st.text_input("Masukkan API Key", type="password")
|
|
os.environ["OPENAI_API_KEY"] = st.session_state.api_key
|
|
|
|
st.session_state.chroma_collection_name = st.text_input("Chroma Collection Name")
|
|
|
|
st.session_state.source_docs = st.file_uploader("Unggah file PDF", type=["pdf"], accept_multiple_files=True)
|
|
st.button("Proses Dokumen", on_click=process_data)
|
|
|
|
def process_data():
|
|
"""Main function to process data"""
|
|
if not st.session_state.api_key or not st.session_state.chroma_collection_name or not st.session_state.source_docs:
|
|
st.error("Tolong masukan API key, Chroma collection name, dan dokumen yang diperlukan!!")
|
|
else:
|
|
with st.spinner("π Memproses dokumen..."):
|
|
loaded_docs = load_data(st.session_state.source_docs)
|
|
splitted_docs = split_data(loaded_docs)
|
|
|
|
idx = [str(uuid4()) for _ in range(len(splitted_docs))]
|
|
|
|
st.session_state.vector_store = upsert_chromadb(splitted_docs,
|
|
st.session_state.embedding,
|
|
idx,
|
|
st.session_state.chroma_collection_name,
|
|
db_name)
|
|
msg = st.empty()
|
|
msg.success("Dokumen berhasil diproses!")
|
|
time.sleep(3)
|
|
msg.empty()
|
|
|
|
|
|
@tool(response_format="content_and_artifact")
|
|
def retrieve(query: str):
|
|
"""Retrieve information related to a query.
|
|
|
|
Args:
|
|
query: The user's query.
|
|
"""
|
|
retrieved_docs = st.session_state.vector_store.similarity_search(query, k=6)
|
|
keys = ["author", "creator", "page", "source", "start_index", "total_pages"]
|
|
serialized = "\n\n".join(
|
|
(f"Source: {[{key: doc.metadata.get(key)} for key in keys]}\n" f"Content: {doc.page_content}")
|
|
for doc in retrieved_docs
|
|
)
|
|
return serialized, retrieved_docs
|
|
|
|
def generate(query):
|
|
"""Generate a response to the user's query."""
|
|
|
|
retriever = st.session_state.vector_store.as_retriever(search_kwargs={"k" : 1})
|
|
|
|
|
|
history_retriever = history_aware_retriever(st.session_state.llm, retriever)
|
|
question_answer_chain = documents_retriever(st.session_state.llm)
|
|
|
|
rag_chain = create_retrieval_chain(history_retriever, question_answer_chain)
|
|
|
|
|
|
response = rag_chain.invoke({"input": query, "chat_history" : st.session_state.messages, "context" : retrieve.invoke(query)})
|
|
st.session_state.messages.append(query)
|
|
st.session_state.messages.append(response["answer"])
|
|
return response["answer"]
|
|
|
|
if __name__ == "__main__":
|
|
os.makedirs(db_name, exist_ok=True)
|
|
|
|
inputs()
|
|
st.session_state.llm = load_model(os.getenv("OPENAI_API_KEY"))
|
|
load_embedding()
|
|
|
|
if "messages" not in st.session_state:
|
|
st.session_state.messages = []
|
|
|
|
if st.session_state.messages:
|
|
st.chat_message('human').write(st.session_state.messages[-2])
|
|
st.chat_message('ai').write(st.session_state.messages[-1])
|
|
|
|
query = st.chat_input("Masukkan Prompt")
|
|
if query:
|
|
st.chat_message("human").write(query)
|
|
response = generate(query)
|
|
st.chat_message("ai").write(response)
|
|
|