Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import yfinance as yf
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
from sklearn.model_selection import train_test_split
|
6 |
+
from sklearn.preprocessing import MinMaxScaler
|
7 |
+
from sklearn.linear_model import LinearRegression
|
8 |
+
from sklearn.metrics import mean_squared_error, r2_score
|
9 |
+
import mplfinance as mpf
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
|
12 |
+
|
13 |
+
def get_stock_data(symbol, timeframe):
|
14 |
+
"""Fetches stock data from Yahoo Finance."""
|
15 |
+
ticker = yf.Ticker(symbol)
|
16 |
+
|
17 |
+
# Calculate period based on timeframe
|
18 |
+
if timeframe in ['1m', '5m', '15m', '30m']:
|
19 |
+
period = "1d"
|
20 |
+
elif timeframe in ['1h']:
|
21 |
+
period = "5d"
|
22 |
+
else:
|
23 |
+
period = "60d"
|
24 |
+
|
25 |
+
data = ticker.history(period=period, interval=timeframe)
|
26 |
+
return data
|
27 |
+
|
28 |
+
|
29 |
+
def calculate_indicators(data):
|
30 |
+
"""Calculates technical indicators."""
|
31 |
+
data['SMA20'] = data['Close'].rolling(window=20).mean() # Simple Moving Average (20 days)
|
32 |
+
data['EMA20'] = data['Close'].ewm(span=20, adjust=False).mean() # Exponential Moving Average (20 days)
|
33 |
+
data['RSI'] = calculate_rsi(data['Close']) # Relative Strength Index
|
34 |
+
data['MACD'], data['MACD_Signal'], _ = calculate_macd(data['Close']) # Moving Average Convergence Divergence
|
35 |
+
data['Stochastic_K'], data['Stochastic_D'] = calculate_stochastic(data['High'], data['Low'], data['Close']) # Stochastic Oscillator
|
36 |
+
return data
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
def calculate_rsi(close_prices, period=14):
|
41 |
+
"""Calculates the Relative Strength Index (RSI)."""
|
42 |
+
delta = close_prices.diff()
|
43 |
+
gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()
|
44 |
+
loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean()
|
45 |
+
rs = gain / loss
|
46 |
+
rsi = 100 - (100 / (1 + rs))
|
47 |
+
return rsi
|
48 |
+
|
49 |
+
def calculate_macd(close_prices, fast_period=12, slow_period=26, signal_period=9):
|
50 |
+
"""Calculates the Moving Average Convergence Divergence (MACD)."""
|
51 |
+
fast_ema = close_prices.ewm(span=fast_period, adjust=False).mean()
|
52 |
+
slow_ema = close_prices.ewm(span=slow_period, adjust=False).mean()
|
53 |
+
macd = fast_ema - slow_ema
|
54 |
+
macd_signal = macd.ewm(span=signal_period, adjust=False).mean()
|
55 |
+
macd_histogram = macd - macd_signal
|
56 |
+
return macd, macd_signal, macd_histogram
|
57 |
+
|
58 |
+
def calculate_stochastic(high_prices, low_prices, close_prices, period=14):
|
59 |
+
"""Calculates the Stochastic Oscillator."""
|
60 |
+
lowest_low = low_prices.rolling(window=period).min()
|
61 |
+
highest_high = high_prices.rolling(window=period).max()
|
62 |
+
k = ((close_prices - lowest_low) / (highest_high - lowest_low)) * 100
|
63 |
+
d = k.rolling(window=3).mean()
|
64 |
+
return k, d
|
65 |
+
|
66 |
+
def predict_next_day(symbol, timeframe):
|
67 |
+
"""Predicts the next day's closing price."""
|
68 |
+
data = get_stock_data(symbol, timeframe)
|
69 |
+
data = calculate_indicators(data)
|
70 |
+
|
71 |
+
# Prepare data for training
|
72 |
+
data = data.dropna()
|
73 |
+
X = data[['SMA20', 'EMA20', 'RSI', 'MACD', 'MACD_Signal', 'Stochastic_K', 'Stochastic_D']]
|
74 |
+
y = data['Close']
|
75 |
+
|
76 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
77 |
+
|
78 |
+
# Scale the data
|
79 |
+
scaler = MinMaxScaler()
|
80 |
+
# Create a linear regression model
|
81 |
+
model = LinearRegression()
|
82 |
+
model.fit(X_train, y_train)
|
83 |
+
|
84 |
+
# Predict next day's closing price
|
85 |
+
last_data_point = data.iloc[-1]
|
86 |
+
last_data_point = last_data_point[['SMA20', 'EMA20', 'RSI', 'MACD', 'MACD_Signal', 'Stochastic_K', 'Stochastic_D']]
|
87 |
+
predicted_price = model.predict([last_data_point.values])[0]
|
88 |
+
|
89 |
+
# Calculate model evaluation metrics
|
90 |
+
y_pred = model.predict(X_test)
|
91 |
+
mse = mean_squared_error(y_test, y_pred)
|
92 |
+
rmse = np.sqrt(mse)
|
93 |
+
r2 = r2_score(y_test, y_pred)
|
94 |
+
|
95 |
+
print(f"Mean Squared Error: {mse:.2f}")
|
96 |
+
print(f"Root Mean Squared Error: {rmse:.2f}")
|
97 |
+
print(f"R-squared: {r2:.2f}")
|
98 |
+
|
99 |
+
return predicted_price
|
100 |
+
|
101 |
+
def plot_candlestick(data, symbol, timeframe, predicted_price=None):
|
102 |
+
"""Plots the candlestick chart with technical indicators."""
|
103 |
+
fig, ax = plt.subplots(figsize=(12, 6))
|
104 |
+
mpf.plot(data, type='candle', style='charles', ax=ax, volume=True, show_nontrading=True)
|
105 |
+
|
106 |
+
# Add moving averages
|
107 |
+
ax.plot(data.index, data['SMA20'], label='SMA20', color='blue', alpha=0.7)
|
108 |
+
ax.plot(data.index, data['EMA20'], label='EMA20', color='red', alpha=0.7)
|
109 |
+
|
110 |
+
# Add prediction
|
111 |
+
if predicted_price is not None:
|
112 |
+
last_timestamp = data.index[-1] + pd.Timedelta(timeframe)
|
113 |
+
ax.scatter(last_timestamp, predicted_price, color='green', marker='*', s=100, label='Prediction')
|
114 |
+
|
115 |
+
ax.legend()
|
116 |
+
ax.set_title(f"{symbol} - {timeframe}")
|
117 |
+
ax.tick_params(axis='x', rotation=45)
|
118 |
+
fig.tight_layout()
|
119 |
+
return fig
|
120 |
+
|
121 |
+
def main():
|
122 |
+
"""Gradio Interface."""
|
123 |
+
|
124 |
+
symbol = gr.inputs.Textbox(label="Symbol", default="AAPL")
|
125 |
+
timeframe = gr.inputs.Dropdown(label="Timeframe", choices=["1m", "5m", "15m", "30m", "1h", "1d"], default="1d")
|
126 |
+
|
127 |
+
with gr.Blocks() as interface:
|
128 |
+
gr.Markdown("## Real-time Stock Market Analysis")
|
129 |
+
with gr.Row():
|
130 |
+
symbol_input = gr.Textbox(label="Symbol", default="AAPL", interactive=True)
|
131 |
+
timeframe_input = gr.Dropdown(label="Timeframe", choices=["1m", "5m", "15m", "30m", "1h", "1d"], value="1d", interactive=True)
|
132 |
+
|
133 |
+
with gr.Row():
|
134 |
+
predict_button = gr.Button(value="Predict")
|
135 |
+
predicted_price = gr.Textbox(label="Predicted Price")
|
136 |
+
|
137 |
+
with gr.Row():
|
138 |
+
output_plot = gr.Plot(label="Candlestick Chart")
|
139 |
+
|
140 |
+
predict_button.click(fn=predict_next_day, inputs=[symbol_input, timeframe_input], outputs=predicted_price)
|
141 |
+
|
142 |
+
predicted_price.change(fn=plot_candlestick, inputs=[symbol_input, timeframe_input, predicted_price], outputs=output_plot)
|
143 |
+
|
144 |
+
interface.launch()
|
145 |
+
|
146 |
+
if _name_ == "_main_":
|
147 |
+
main()
|