Spaces:
Runtime error
Runtime error
import gradio as gr | |
import yfinance as yf | |
import pandas as pd | |
import numpy as np | |
from sklearn.model_selection import train_test_split | |
from sklearn.preprocessing import MinMaxScaler | |
from sklearn.linear_model import LinearRegression | |
from sklearn.metrics import mean_squared_error, r2_score | |
import mplfinance as mpf | |
import matplotlib.pyplot as plt | |
def get_stock_data(symbol, timeframe): | |
"""Fetches stock data from Yahoo Finance.""" | |
ticker = yf.Ticker(symbol) | |
# Calculate period based on timeframe | |
if timeframe in ['1m', '5m', '15m', '30m']: | |
period = "1d" | |
elif timeframe in ['1h']: | |
period = "5d" | |
else: | |
period = "60d" | |
data = ticker.history(period=period, interval=timeframe) | |
if data.empty: | |
raise ValueError(f"No data found for symbol '{symbol}' with timeframe '{timeframe}'.") | |
return data | |
def calculate_indicators(data): | |
"""Calculates technical indicators.""" | |
data['SMA20'] = data['Close'].rolling(window=20).mean() # Simple Moving Average (20 days) | |
data['EMA20'] = data['Close'].ewm(span=20, adjust=False).mean() # Exponential Moving Average (20 days) | |
data['RSI'] = calculate_rsi(data['Close']) # Relative Strength Index | |
data['MACD'], data['MACD_Signal'], _ = calculate_macd(data['Close']) # Moving Average Convergence Divergence | |
data['Stochastic_K'], data['Stochastic_D'] = calculate_stochastic(data['High'], data['Low'], data['Close']) # Stochastic Oscillator | |
return data | |
def calculate_rsi(close_prices, period=14): | |
"""Calculates the Relative Strength Index (RSI).""" | |
delta = close_prices.diff() | |
gain = (delta.where(delta > 0, 0)).rolling(window=period).mean() | |
loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean() | |
rs = gain / loss | |
rsi = 100 - (100 / (1 + rs)) | |
return rsi | |
def calculate_macd(close_prices, fast_period=12, slow_period=26, signal_period=9): | |
"""Calculates the Moving Average Convergence Divergence (MACD).""" | |
fast_ema = close_prices.ewm(span=fast_period, adjust=False).mean() | |
slow_ema = close_prices.ewm(span=slow_period, adjust=False).mean() | |
macd = fast_ema - slow_ema | |
macd_signal = macd.ewm(span=signal_period, adjust=False).mean() | |
macd_histogram = macd - macd_signal | |
return macd, macd_signal, macd_histogram | |
def calculate_stochastic(high_prices, low_prices, close_prices, period=14): | |
"""Calculates the Stochastic Oscillator.""" | |
lowest_low = low_prices.rolling(window=period).min() | |
highest_high = high_prices.rolling(window=period).max() | |
k = ((close_prices - lowest_low) / (highest_high - lowest_low)) * 100 | |
d = k.rolling(window=3).mean() | |
return k, d | |
def predict_next_day(symbol, timeframe): | |
"""Predicts the next day's closing price.""" | |
data = get_stock_data(symbol, timeframe) | |
data = calculate_indicators(data) | |
# Prepare data for training | |
data = data.dropna() | |
X = data[['SMA20', 'EMA20', 'RSI', 'MACD', 'MACD_Signal', 'Stochastic_K', 'Stochastic_D']] | |
y = data['Close'] | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) | |
# Scale the data | |
scaler = MinMaxScaler() | |
# Create a linear regression model | |
model = LinearRegression() | |
model.fit(X_train, y_train) | |
# Predict next day's closing price | |
last_data_point = data.iloc[-1] | |
last_data_point = last_data_point[['SMA20', 'EMA20', 'RSI', 'MACD', 'MACD_Signal', 'Stochastic_K', 'Stochastic_D']] | |
predicted_price = model.predict([last_data_point.values])[0] | |
# Calculate model evaluation metrics | |
y_pred = model.predict(X_test) | |
mse = mean_squared_error(y_test, y_pred) | |
rmse = np.sqrt(mse) | |
r2 = r2_score(y_test, y_pred) | |
print(f"Mean Squared Error: {mse:.2f}") | |
print(f"Root Mean Squared Error: {rmse:.2f}") | |
print(f"R-squared: {r2:.2f}") | |
return predicted_price | |
def plot_candlestick(data, symbol, timeframe, predicted_price=None): | |
"""Plots the candlestick chart with technical indicators.""" | |
if data.empty: | |
raise ValueError("No valid data to plot. Please check your inputs.") | |
fig, ax = plt.subplots(figsize=(12, 6)) | |
mpf.plot(data, type='candle', style='charles', ax=ax, volume=True, show_nontrading=True) | |
# Add moving averages | |
ax.plot(data.index, data['SMA20'], label='SMA20', color='blue', alpha=0.7) | |
ax.plot(data.index, data['EMA20'], label='EMA20', color='red', alpha=0.7) | |
# Add prediction | |
if predicted_price is not None: | |
last_timestamp = data.index[-1] + pd.Timedelta(timeframe) | |
ax.scatter(last_timestamp, predicted_price, color='green', marker='*', s=100, label='Prediction') | |
ax.legend() | |
ax.set_title(f"{symbol} - {timeframe}") | |
ax.tick_params(axis='x', rotation=45) | |
fig.tight_layout() | |
return fig | |
def main(): | |
"""Gradio Interface.""" | |
symbol_input = gr.Textbox("AAPL", label="Symbol", interactive=True) # Moved "AAPL" to the correct position | |
timeframe_input = gr.Dropdown(label="Timeframe", choices=["1m", "5m", "15m", "30m", "1h", "1d"], value="1d") | |
with gr.Blocks() as interface: | |
gr.Markdown("## Real-time Stock Market Analysis") | |
with gr.Row(): | |
symbol_input = gr.Textbox("AAPL", label="Symbol", interactive=True) | |
timeframe_input = gr.Dropdown(label="Timeframe", choices=["1m", "5m", "15m", "30m", "1h", "1d"], value="1d", interactive=True) | |
with gr.Row(): | |
predict_button = gr.Button(value="Predict") | |
predicted_price = gr.Textbox(label="Predicted Price") | |
with gr.Row(): | |
output_plot = gr.Plot(label="Candlestick Chart") | |
predict_button.click(fn=predict_next_day, inputs=[symbol_input, timeframe_input], outputs=predicted_price) | |
predicted_price.change(fn=plot_candlestick, inputs=[symbol_input, timeframe_input, predicted_price], outputs=output_plot) | |
interface.launch() | |
if __name__ == "__main__": | |
main() |