stock_market / app.py
Reality123b's picture
Update app.py
6f04329 verified
raw
history blame
5.94 kB
import gradio as gr
import yfinance as yf
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
import mplfinance as mpf
import matplotlib.pyplot as plt
def get_stock_data(symbol, timeframe):
"""Fetches stock data from Yahoo Finance."""
ticker = yf.Ticker(symbol)
# Calculate period based on timeframe
if timeframe in ['1m', '5m', '15m', '30m']:
period = "1d"
elif timeframe in ['1h']:
period = "5d"
else:
period = "60d"
data = ticker.history(period=period, interval=timeframe)
if data.empty:
raise ValueError(f"No data found for symbol '{symbol}' with timeframe '{timeframe}'.")
return data
def calculate_indicators(data):
"""Calculates technical indicators."""
data['SMA20'] = data['Close'].rolling(window=20).mean() # Simple Moving Average (20 days)
data['EMA20'] = data['Close'].ewm(span=20, adjust=False).mean() # Exponential Moving Average (20 days)
data['RSI'] = calculate_rsi(data['Close']) # Relative Strength Index
data['MACD'], data['MACD_Signal'], _ = calculate_macd(data['Close']) # Moving Average Convergence Divergence
data['Stochastic_K'], data['Stochastic_D'] = calculate_stochastic(data['High'], data['Low'], data['Close']) # Stochastic Oscillator
return data
def calculate_rsi(close_prices, period=14):
"""Calculates the Relative Strength Index (RSI)."""
delta = close_prices.diff()
gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean()
rs = gain / loss
rsi = 100 - (100 / (1 + rs))
return rsi
def calculate_macd(close_prices, fast_period=12, slow_period=26, signal_period=9):
"""Calculates the Moving Average Convergence Divergence (MACD)."""
fast_ema = close_prices.ewm(span=fast_period, adjust=False).mean()
slow_ema = close_prices.ewm(span=slow_period, adjust=False).mean()
macd = fast_ema - slow_ema
macd_signal = macd.ewm(span=signal_period, adjust=False).mean()
macd_histogram = macd - macd_signal
return macd, macd_signal, macd_histogram
def calculate_stochastic(high_prices, low_prices, close_prices, period=14):
"""Calculates the Stochastic Oscillator."""
lowest_low = low_prices.rolling(window=period).min()
highest_high = high_prices.rolling(window=period).max()
k = ((close_prices - lowest_low) / (highest_high - lowest_low)) * 100
d = k.rolling(window=3).mean()
return k, d
def predict_next_day(symbol, timeframe):
"""Predicts the next day's closing price."""
data = get_stock_data(symbol, timeframe)
data = calculate_indicators(data)
# Prepare data for training
data = data.dropna()
X = data[['SMA20', 'EMA20', 'RSI', 'MACD', 'MACD_Signal', 'Stochastic_K', 'Stochastic_D']]
y = data['Close']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Scale the data
scaler = MinMaxScaler()
# Create a linear regression model
model = LinearRegression()
model.fit(X_train, y_train)
# Predict next day's closing price
last_data_point = data.iloc[-1]
last_data_point = last_data_point[['SMA20', 'EMA20', 'RSI', 'MACD', 'MACD_Signal', 'Stochastic_K', 'Stochastic_D']]
predicted_price = model.predict([last_data_point.values])[0]
# Calculate model evaluation metrics
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
r2 = r2_score(y_test, y_pred)
print(f"Mean Squared Error: {mse:.2f}")
print(f"Root Mean Squared Error: {rmse:.2f}")
print(f"R-squared: {r2:.2f}")
return predicted_price
def plot_candlestick(data, symbol, timeframe, predicted_price=None):
"""Plots the candlestick chart with technical indicators."""
if data.empty:
raise ValueError("No valid data to plot. Please check your inputs.")
fig, ax = plt.subplots(figsize=(12, 6))
mpf.plot(data, type='candle', style='charles', ax=ax, volume=True, show_nontrading=True)
# Add moving averages
ax.plot(data.index, data['SMA20'], label='SMA20', color='blue', alpha=0.7)
ax.plot(data.index, data['EMA20'], label='EMA20', color='red', alpha=0.7)
# Add prediction
if predicted_price is not None:
last_timestamp = data.index[-1] + pd.Timedelta(timeframe)
ax.scatter(last_timestamp, predicted_price, color='green', marker='*', s=100, label='Prediction')
ax.legend()
ax.set_title(f"{symbol} - {timeframe}")
ax.tick_params(axis='x', rotation=45)
fig.tight_layout()
return fig
def main():
"""Gradio Interface."""
symbol_input = gr.Textbox("AAPL", label="Symbol", interactive=True) # Moved "AAPL" to the correct position
timeframe_input = gr.Dropdown(label="Timeframe", choices=["1m", "5m", "15m", "30m", "1h", "1d"], value="1d")
with gr.Blocks() as interface:
gr.Markdown("## Real-time Stock Market Analysis")
with gr.Row():
symbol_input = gr.Textbox("AAPL", label="Symbol", interactive=True)
timeframe_input = gr.Dropdown(label="Timeframe", choices=["1m", "5m", "15m", "30m", "1h", "1d"], value="1d", interactive=True)
with gr.Row():
predict_button = gr.Button(value="Predict")
predicted_price = gr.Textbox(label="Predicted Price")
with gr.Row():
output_plot = gr.Plot(label="Candlestick Chart")
predict_button.click(fn=predict_next_day, inputs=[symbol_input, timeframe_input], outputs=predicted_price)
predicted_price.change(fn=plot_candlestick, inputs=[symbol_input, timeframe_input, predicted_price], outputs=output_plot)
interface.launch()
if __name__ == "__main__":
main()