Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
-
from transformers import
|
|
|
|
|
4 |
|
5 |
class ModelInput(BaseModel):
|
6 |
prompt: str
|
@@ -8,34 +10,46 @@ class ModelInput(BaseModel):
|
|
8 |
|
9 |
app = FastAPI()
|
10 |
|
11 |
-
#
|
12 |
-
|
|
|
13 |
|
14 |
try:
|
15 |
-
#
|
|
|
16 |
model = AutoModelForCausalLM.from_pretrained(
|
17 |
-
|
|
|
18 |
trust_remote_code=True,
|
19 |
device_map="auto"
|
20 |
)
|
21 |
|
22 |
-
tokenizer
|
23 |
-
print("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
except Exception as e:
|
26 |
-
print(f"Error
|
27 |
raise
|
28 |
|
29 |
def generate_response(model, tokenizer, instruction, max_new_tokens=128):
|
30 |
"""Generate a response from the model based on an instruction."""
|
31 |
try:
|
32 |
-
# Format the input
|
33 |
messages = [{"role": "user", "content": instruction}]
|
34 |
input_text = tokenizer.apply_chat_template(
|
35 |
messages, tokenize=False, add_generation_prompt=True
|
36 |
)
|
37 |
|
38 |
-
# Generate
|
39 |
inputs = tokenizer.encode(input_text, return_tensors="pt").to(model.device)
|
40 |
outputs = model.generate(
|
41 |
inputs,
|
@@ -45,7 +59,6 @@ def generate_response(model, tokenizer, instruction, max_new_tokens=128):
|
|
45 |
do_sample=True,
|
46 |
)
|
47 |
|
48 |
-
# Decode
|
49 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
50 |
return response
|
51 |
|
@@ -54,7 +67,6 @@ def generate_response(model, tokenizer, instruction, max_new_tokens=128):
|
|
54 |
|
55 |
@app.post("/generate")
|
56 |
async def generate_text(input: ModelInput):
|
57 |
-
"""API endpoint to generate text."""
|
58 |
try:
|
59 |
response = generate_response(
|
60 |
model=model,
|
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
import torch
|
5 |
+
from huggingface_hub import snapshot_download
|
6 |
|
7 |
class ModelInput(BaseModel):
|
8 |
prompt: str
|
|
|
10 |
|
11 |
app = FastAPI()
|
12 |
|
13 |
+
# Define model paths
|
14 |
+
base_model_path = "HuggingFaceTB/SmolLM2-135M-Instruct"
|
15 |
+
adapter_path = "khurrameycon/SmolLM-135M-Instruct-qa_pairs_converted.json-25epochs"
|
16 |
|
17 |
try:
|
18 |
+
# First load the base model
|
19 |
+
print("Loading base model...")
|
20 |
model = AutoModelForCausalLM.from_pretrained(
|
21 |
+
base_model_path,
|
22 |
+
torch_dtype=torch.float16,
|
23 |
trust_remote_code=True,
|
24 |
device_map="auto"
|
25 |
)
|
26 |
|
27 |
+
# Load tokenizer from base model
|
28 |
+
print("Loading tokenizer...")
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_path)
|
30 |
+
|
31 |
+
# Download and load adapter weights
|
32 |
+
print("Loading adapter weights...")
|
33 |
+
adapter_path_local = snapshot_download(adapter_path)
|
34 |
+
|
35 |
+
# Load the adapter weights
|
36 |
+
state_dict = torch.load(f"{adapter_path_local}/adapter_model.safetensors")
|
37 |
+
model.load_state_dict(state_dict, strict=False)
|
38 |
+
|
39 |
+
print("Model and adapter loaded successfully!")
|
40 |
|
41 |
except Exception as e:
|
42 |
+
print(f"Error during model loading: {e}")
|
43 |
raise
|
44 |
|
45 |
def generate_response(model, tokenizer, instruction, max_new_tokens=128):
|
46 |
"""Generate a response from the model based on an instruction."""
|
47 |
try:
|
|
|
48 |
messages = [{"role": "user", "content": instruction}]
|
49 |
input_text = tokenizer.apply_chat_template(
|
50 |
messages, tokenize=False, add_generation_prompt=True
|
51 |
)
|
52 |
|
|
|
53 |
inputs = tokenizer.encode(input_text, return_tensors="pt").to(model.device)
|
54 |
outputs = model.generate(
|
55 |
inputs,
|
|
|
59 |
do_sample=True,
|
60 |
)
|
61 |
|
|
|
62 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
63 |
return response
|
64 |
|
|
|
67 |
|
68 |
@app.post("/generate")
|
69 |
async def generate_text(input: ModelInput):
|
|
|
70 |
try:
|
71 |
response = generate_response(
|
72 |
model=model,
|