Spaces:
Running
Running
from fastapi import FastAPI, HTTPException | |
from pydantic import BaseModel | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
from huggingface_hub import snapshot_download | |
from safetensors.torch import load_file | |
import numpy as np | |
import torch.nn as nn | |
import networkx as nx | |
from dataclasses import dataclass | |
from typing import List, Dict, Any, Tuple, Optional, Set, Protocol, Union | |
from collections import defaultdict | |
import heapq | |
from abc import ABC, abstractmethod | |
from enum import Enum | |
import concurrent.futures | |
from concurrent.futures import ThreadPoolExecutor | |
import time | |
from datetime import datetime | |
import random | |
import pandas as pd | |
from torch.utils.data import Dataset, DataLoader, TensorDataset | |
from sklearn.model_selection import train_test_split | |
from tqdm import tqdm | |
import os | |
from sklearn.preprocessing import MinMaxScaler | |
# --- Enhanced Constants --- | |
MAX_SHORT_TERM_MEMORY = 10000 # Increased capacity | |
MAX_LONG_TERM_MEMORY = 100000 # Increased capacity | |
UNCERTAINTY_QUANTIFICATION_METHODS = ['bayesian', 'ensemble', 'confidence_scores', 'gaussian_processes'] | |
QUANTUM_ALGORITHMS = ["Shor's", "Grover's", "QAOA", "VQE", "HHL"] | |
NETWORK_ADAPTATION_THRESHOLD = 0.5 # Adjusted threshold | |
REAL_WORLD_INTERACTION_TYPES = ['sensor_read', 'actuator_execute', 'data_stream', 'feedback_loop'] | |
CONTEXT_SIMILARITY_THRESHOLD = 0.4 # Lower threshold for broader context | |
CONTEXT_DECAY_RATE = 0.0005 # Slower decay | |
MAX_CONTEXT_SIZE = 10000 # Increased context size | |
KNOWLEDGE_RELATIONSHIP_DECAY_RATE = 0.0005 # Slower decay | |
MAX_KNOWLEDGE_NODES = 50000 # Increased node capacity | |
CAUSAL_INFERENCE_THRESHOLD = 0.5 # Adjusted threshold | |
CAUSAL_DECAY_RATE = 0.0005 # Slower decay | |
MAX_CAUSAL_ENTRIES = 10000 # Increased entry capacity | |
MAX_DOMAIN_MODELS = 200 # Increased model capacity | |
MAX_TRANSFER_MAPPINGS = 500 # Increased mapping capacity | |
ADAPTIVE_LEARNING_INITIAL_LR = 0.2 # Higher initial learning rate | |
ADAPTIVE_LEARNING_MIN_LR = 0.0000001 # Lower minimum learning rate | |
ADAPTIVE_LEARNING_MAX_LR = 1.0 # Increased max learning rate | |
EMOTION_CATEGORIES = ['anger', 'fear', 'joy', 'love', 'sadness', 'surprise', 'neutral', 'anticipation', 'trust', 'disgust', 'contentment', 'boredom', 'curiosity', 'awe'] # Expanded emotion categories | |
COLLABORATIVE_CONSENSUS_THRESHOLD = 0.7 # Adjusted threshold | |
MAX_COLLABORATIVE_AGENTS = 100 # Increased agent capacity | |
SOLUTION_HISTORY_SIZE = 1000 # Increased history size | |
MAX_ETHICAL_VIOLATIONS_HISTORY = 2000 # Increased history capacity | |
MAX_RESOURCE_HISTORY = 5000 # Increased history size | |
MAX_PREDICTIVE_MODELS = 100 # Increased model capacity | |
MAX_PREDICTION_HISTORY = 10000 # Increased history capacity | |
SHORT_TERM_MEMORY_CAPACITY = 1000 # Increased capacity | |
MEMORY_CONSOLIDATION_THRESHOLD = 1.5 # Lower threshold for faster consolidation | |
LONG_TERM_MEMORY_CAPACITY = 10000 # Increased capacity | |
MAX_COGNITIVE_STYLE_HISTORY = 500 # Increased history size | |
GOAL_ALIGNMENT_THRESHOLD = 0.5 # Adjusted threshold | |
MAX_GOALS = 500 # Increased goal capacity | |
MAX_SAFETY_CONSTRAINTS = 500 # Increased constraint capacity | |
MAX_LANGUAGES = 100 # Increased language capacity | |
QUANTUM_MAX_RESULTS_HISTORY = 1000 # Increased history size | |
ADAPTIVE_NEURAL_NETWORK_MAX_LAYERS = 30 # Increased layer capacity | |
ADAPTIVE_NEURAL_NETWORK_MAX_LAYER_SIZE = 32768 # Increased layer size | |
MAX_INTERACTION_HISTORY = 5000 # Increased history capacity | |
RESPONSE_MODEL_HIDDEN_DIM = 8192 # Increased response model hidden dimensions | |
RESPONSE_MODEL_OUTPUT_DIM = 4096 # Increased response model output dimensions | |
TRAINING_BATCH_SIZE = 128 # Increased training batch size | |
TRAINING_EPOCHS = 20 # Increased training epochs | |
TRAINING_LEARNING_RATE = 0.0001 # Changed learning rate for better convergence | |
TEXT_EMBEDDING_DIM = 768 # Standard dimension for text embeddings | |
VISUAL_EMBEDDING_DIM = 2048 # Dimension for visual embeddings | |
AUDIO_EMBEDDING_DIM = 512 # Dimension for audio embeddings | |
# --- Enhanced Thinking Styles --- | |
class ThinkingStyle(Enum): | |
ANALYTICAL = "analytical" | |
CREATIVE = "creative" | |
CRITICAL = "critical" | |
SYSTEMATIC = "systematic" | |
LATERAL = "lateral" | |
INTUITIVE = "intuitive" | |
COLLABORATIVE = "collaborative" | |
ETHICAL = "ethical" | |
PRAGMATIC = "pragmatic" | |
INNOVATIVE = "innovative" | |
REFLECTIVE = "reflective" | |
EXPLORATORY = "exploratory" | |
STRATEGIC = "strategic" | |
ABSTRACT = "abstract" | |
CONCRETE = "concrete" | |
EMPATHETIC = "empathetic" | |
HOLISTIC = "holistic" | |
DIVERGENT = "divergent" | |
CONVERGENT = "convergent" | |
ADAPTIVE = "adaptive" | |
# --- Enhanced Generalized Context Manager --- | |
class GeneralizedContextManager: | |
def __init__(self, similarity_threshold=CONTEXT_SIMILARITY_THRESHOLD, context_decay_rate=CONTEXT_DECAY_RATE, max_context_size=MAX_CONTEXT_SIZE): | |
self.context_graph = nx.DiGraph() | |
self.temporal_window = [] | |
self.context_cache = {} | |
self.similarity_threshold = similarity_threshold | |
self.context_decay_rate = context_decay_rate | |
self.max_context_size = max_context_size | |
self.event_listeners = defaultdict(list) | |
def add_context(self, context_id: str, context_data: Dict[str, Any], | |
timestamp: Optional[datetime] = None, metadata: Optional[Dict[str, Any]] = None): | |
if timestamp is None: | |
timestamp = datetime.now() | |
if context_id not in self.context_graph: | |
self.context_graph.add_node(context_id, | |
data=context_data, | |
timestamp=timestamp, | |
metadata=metadata or {}) | |
else: | |
self.context_graph.nodes[context_id]['data'].update(context_data) | |
self.context_graph.nodes[context_id]['timestamp'] = timestamp | |
if metadata: | |
self.context_graph.nodes[context_id]['metadata'].update(metadata) | |
self.temporal_window.append((timestamp, context_id)) | |
self.temporal_window.sort() | |
self._update_relationships(context_id) | |
self._manage_context_size() | |
self._decay_context() | |
self._trigger_event(context_id, 'context_added') | |
def _calculate_similarity(self, data1: Dict[str, Any], data2: Dict[str, Any]) -> float: | |
keys1 = set(data1.keys()) | |
keys2 = set(data2.keys()) | |
common_keys = keys1.intersection(keys2) | |
if not common_keys: | |
return 0.0 | |
similarity_sum = 0.0 | |
for key in common_keys: | |
value1 = data1[key] | |
value2 = data2[key] | |
if isinstance(value1, (int, float)) and isinstance(value2, (int, float)): | |
similarity_sum += 1.0 / (1.0 + abs(value1 - value2)) | |
elif isinstance(value1, str) and isinstance(value2, str): | |
similarity_sum += float(value1 == value2) | |
elif isinstance(value1, (list, tuple, np.ndarray)) and isinstance(value2, (list, tuple, np.ndarray)): | |
if isinstance(value1, np.ndarray): | |
value1 = value1.flatten() | |
if isinstance(value2, np.ndarray): | |
value2 = value2.flatten() | |
if value1.size > 0 and value2.size > 0: | |
dot_product = np.dot(value1, value2) | |
magnitude1 = np.linalg.norm(value1) | |
magnitude2 = np.linalg.norm(value2) | |
if magnitude1 != 0 and magnitude2 != 0: | |
similarity_sum += dot_product / (magnitude1 * magnitude2) | |
elif type(value1) == type(value2): | |
similarity_sum += float(value1 == value2) | |
return similarity_sum / len(common_keys) if len(common_keys) > 0 else 0.0 | |
def _update_relationships(self, context_id: str): | |
context_data = self.context_graph.nodes[context_id]['data'] | |
for existing_id in self.context_graph.nodes(): | |
if existing_id != context_id: | |
similarity = self._calculate_similarity( | |
context_data, | |
self.context_graph.nodes[existing_id]['data'] | |
) | |
if similarity > self.similarity_threshold: | |
if not self.context_graph.has_edge(context_id, existing_id): | |
self.context_graph.add_edge(context_id, existing_id, weight=similarity) | |
else: | |
self.context_graph[context_id][existing_id]['weight'] = similarity | |
elif self.context_graph.has_edge(context_id, existing_id): | |
self.context_graph.remove_edge(context_id, existing_id) | |
def _decay_context(self): | |
now = datetime.now() | |
self.temporal_window = [(t, c_id) for t, c_id in self.temporal_window if (now - t).total_seconds() < 86400 * 30] # Increased window to 30 days | |
nodes_to_remove = [] | |
for node, data in self.context_graph.nodes(data=True): | |
time_diff = (now - data['timestamp']).total_seconds() | |
data['weight'] = data.get('weight', 1.0) * (1 - self.context_decay_rate * time_diff) | |
if data['weight'] < 0.00001: # More aggressive decay | |
nodes_to_remove.append(node) | |
for node in nodes_to_remove: | |
self.context_graph.remove_node(node) | |
self._trigger_event(node, 'context_removed') | |
def _manage_context_size(self): | |
if len(self.context_graph) > self.max_context_size: | |
# Remove least recently used or lowest weighted nodes | |
sorted_nodes = sorted(self.context_graph.nodes(data=True), | |
key=lambda x: (x[1]['timestamp'], x[1].get('weight', 1.0))) | |
nodes_to_remove = sorted_nodes[:len(self.context_graph) - self.max_context_size] | |
for node, _ in nodes_to_remove: | |
self.context_graph.remove_node(node) | |
self._trigger_event(node, 'context_removed') | |
def retrieve_related_context(self, context_id: str, depth: int = 4, min_similarity: float = 0.1) -> Dict[str, Any]: | |
related_context = {} | |
try: | |
neighbors = nx.ego_graph(self.context_graph, context_id, radius=depth) | |
for neighbor in neighbors: | |
edge_data = self.context_graph.get_edge_data(context_id, neighbor) | |
if edge_data is None or edge_data['weight'] >= min_similarity: | |
related_context[neighbor] = self.context_graph.nodes[neighbor]['data'] | |
except nx.NodeNotFound: | |
pass | |
return related_context | |
def register_event_listener(self, event_type: str, listener: callable): | |
self.event_listeners[event_type].append(listener) | |
def _trigger_event(self, context_id: str, event_type: str): | |
if event_type in self.event_listeners: | |
for listener in self.event_listeners[event_type]: | |
listener(context_id, event_type, self.context_graph.nodes[context_id]) | |
# --- Enhanced Dynamic Knowledge Graph --- | |
class DynamicKnowledgeGraph: | |
def __init__(self, relationship_decay_rate=KNOWLEDGE_RELATIONSHIP_DECAY_RATE, max_nodes=MAX_KNOWLEDGE_NODES): | |
self.knowledge_graph = nx.DiGraph() | |
self.temporal_index = defaultdict(list) | |
self.relationship_decay_rate = relationship_decay_rate | |
self.max_nodes = max_nodes | |
self.event_listeners = defaultdict(list) | |
def add_knowledge(self, concept: str, properties: Dict[str, Any], | |
timestamp: Optional[datetime]=None, relationships: Optional[Dict[str, float]] = None): | |
if timestamp is None: | |
timestamp = datetime.now() | |
if concept not in self.knowledge_graph: | |
self.knowledge_graph.add_node(concept, **properties, timestamp=timestamp) | |
self._trigger_event(concept, 'knowledge_added') | |
else: | |
for key, value in properties.items(): | |
self.knowledge_graph.nodes[concept][key] = value | |
self.knowledge_graph.nodes[concept]['timestamp'] = timestamp | |
self._trigger_event(concept, 'knowledge_updated') | |
self.temporal_index[timestamp].append(concept) | |
if relationships: | |
for related_concept, strength in relationships.items(): | |
self.add_relationship(concept, related_concept, strength) | |
self._manage_graph_size() | |
def add_relationship(self, concept1: str, concept2: str, strength: float): | |
if self.knowledge_graph.has_edge(concept1, concept2): | |
self.knowledge_graph[concept1][concept2]['strength'] = strength | |
else: | |
self.knowledge_graph.add_edge(concept1, concept2, strength=strength) | |
self._trigger_event(concept1, 'relationship_added', {'to': concept2, 'strength': strength}) | |
def query_temporal_slice(self, start_time: datetime, | |
end_time: datetime) -> Set[str]: | |
relevant_concepts = set() | |
for time, concepts in self.temporal_index.items(): | |
if start_time <= time <= end_time: | |
relevant_concepts.update(concepts) | |
return relevant_concepts | |
def get_related_concepts(self, concept: str, threshold: float = 0.2, depth: int = 4) -> Dict[str, Dict[str, Any]]: | |
related_concepts = {} | |
try: | |
# Use ego_graph to explore relationships up to the specified depth | |
subgraph = nx.ego_graph(self.knowledge_graph, concept, radius=depth) | |
for neighbor in subgraph.nodes: | |
if neighbor != concept: | |
edge_data = subgraph.get_edge_data(concept, neighbor) | |
# Consider adding a concept if it's directly connected or if it's reachable within the depth | |
if (edge_data and edge_data['strength'] >= threshold) or neighbor in subgraph: | |
related_concepts[neighbor] = self.knowledge_graph.nodes[neighbor] | |
except nx.NodeNotFound: | |
pass | |
return related_concepts | |
def decay_relationships(self): | |
now = datetime.now() | |
for u, v, data in self.knowledge_graph.edges(data=True): | |
time_diff = (now - self.knowledge_graph.nodes[u]['timestamp']).total_seconds() | |
data['strength'] *= (1 - self.relationship_decay_rate * time_diff) | |
if data['strength'] < 0.0001: | |
self.knowledge_graph.remove_edge(u,v) | |
self._trigger_event(u, 'relationship_removed', {'to': v}) | |
def _manage_graph_size(self): | |
if len(self.knowledge_graph) > self.max_nodes: | |
# Remove nodes with the lowest degree (least connected) | |
degrees = dict(self.knowledge_graph.degree()) | |
sorted_nodes = sorted(degrees.items(), key=lambda item: item[1]) | |
nodes_to_remove = [node for node, degree in sorted_nodes[:len(self.knowledge_graph) - self.max_nodes]] | |
for node in nodes_to_remove: | |
self.knowledge_graph.remove_node(node) | |
self._trigger_event(node, 'knowledge_removed') | |
# Remove the node from temporal index as well | |
for time, concepts in self.temporal_index.items(): | |
if node in concepts: | |
concepts.remove(node) | |
def register_event_listener(self, event_type: str, listener: callable): | |
self.event_listeners[event_type].append(listener) | |
def _trigger_event(self, concept: str, event_type: str, additional_data: Optional[Dict[str, Any]] = None): | |
if event_type in self.event_listeners: | |
for listener in self.event_listeners[event_type]: | |
event_data = { | |
'concept': concept, | |
'event_type': event_type, | |
'timestamp': datetime.now(), | |
'additional_data': additional_data or {} | |
} | |
listener(event_data) | |
# --- Enhanced Causal Engine --- | |
class CausalEngine: | |
def __init__(self, inference_threshold=CAUSAL_INFERENCE_THRESHOLD, decay_rate=CAUSAL_DECAY_RATE, max_entries=MAX_CAUSAL_ENTRIES): | |
self.causal_graph = nx.DiGraph() | |
self.inference_cache = {} | |
self.inference_threshold = inference_threshold | |
self.decay_rate = decay_rate | |
self.max_entries = max_entries | |
self.evidence_history = [] | |
self.event_listeners = defaultdict(list) | |
def add_causal_relationship(self, cause: str, effect: str, | |
strength: float, evidence: List[Dict], timestamp: Optional[datetime] = None): | |
if timestamp is None: | |
timestamp = datetime.now() | |
if self.causal_graph.has_edge(cause, effect): | |
self.causal_graph[cause][effect]['strength'] = strength | |
self.causal_graph[cause][effect]['evidence'].extend(evidence) | |
self.causal_graph[cause][effect]['timestamp'] = timestamp | |
else: | |
self.causal_graph.add_edge(cause, effect, | |
strength=strength, | |
evidence=evidence, | |
timestamp=timestamp) | |
self.inference_cache.clear() | |
self._trigger_event('relationship_added', {'cause': cause, 'effect': effect, 'strength': strength}) | |
# Store evidence in history for later analysis or auditing | |
self.evidence_history.append({ | |
'cause': cause, | |
'effect': effect, | |
'strength': strength, | |
'evidence': evidence, | |
'timestamp': timestamp | |
}) | |
self._manage_evidence_history() | |
def infer_causes(self, effect: str, min_strength: Optional[float] = None, depth: int = 4) -> List[Tuple[str, float]]: | |
min_strength = min_strength if min_strength is not None else self.inference_threshold | |
# Check if the result is already in the cache | |
if effect in self.inference_cache: | |
return self.inference_cache[effect] | |
causes = [] | |
# Use breadth-first search to explore causes up to the specified depth | |
queue = [(effect, 1.0, 0)] # (node, cumulative_strength, current_depth) | |
visited = {effect} | |
while queue: | |
current_node, cumulative_strength, current_depth = queue.pop(0) | |
if current_depth < depth: | |
for predecessor in self.causal_graph.predecessors(current_node): | |
edge_data = self.causal_graph.get_edge_data(predecessor, current_node) | |
new_strength = cumulative_strength * edge_data['strength'] | |
if new_strength >= min_strength: | |
causes.append((predecessor, new_strength)) | |
if predecessor not in visited: | |
visited.add(predecessor) | |
queue.append((predecessor, new_strength, current_depth + 1)) | |
causes.sort(key=lambda x: x[1], reverse=True) | |
# Cache the result for future use | |
self.inference_cache[effect] = causes | |
return causes | |
def decay_causal_strengths(self): | |
now = datetime.now() | |
edges_to_remove = [] | |
for u, v, data in self.causal_graph.edges(data=True): | |
time_diff = (now - data['timestamp']).total_seconds() if 'timestamp' in data else 0 | |
data['strength'] = max(0, data['strength'] - self.decay_rate * time_diff) | |
if data['strength'] == 0: | |
edges_to_remove.append((u,v)) | |
for u, v in edges_to_remove: | |
self.causal_graph.remove_edge(u,v) | |
self._trigger_event('relationship_removed', {'cause': u, 'effect': v}) | |
def get_top_causes(self, effect: str, top_n: int = 10) -> List[Tuple[str, float]]: | |
causes = self.infer_causes(effect) | |
return causes[:top_n] | |
def update_causal_strength(self, cause: str, effect: str, new_strength: float, new_evidence: Optional[List[Dict]] = None): | |
if self.causal_graph.has_edge(cause, effect): | |
self.causal_graph[cause][effect]['strength'] = new_strength | |
if new_evidence: | |
self.causal_graph[cause][effect]['evidence'].extend(new_evidence) | |
self.evidence_history.append({ | |
'cause': cause, | |
'effect': effect, | |
'strength': new_strength, | |
'evidence': new_evidence, | |
'timestamp': datetime.now() | |
}) | |
self.inference_cache.clear() # Invalidate cache | |
self._trigger_event('relationship_updated', {'cause': cause, 'effect': effect, 'strength': new_strength}) | |
else: | |
raise ValueError(f"No causal link between {cause} and {effect}") | |
def _manage_evidence_history(self): | |
# Keep the evidence history within the specified size limit | |
if len(self.evidence_history) > self.max_entries: | |
self.evidence_history = self.evidence_history[-self.max_entries:] | |
def register_event_listener(self, event_type: str, listener: callable): | |
self.event_listeners[event_type].append(listener) | |
def _trigger_event(self, event_type: str, event_data: Dict[str, Any]): | |
if event_type in self.event_listeners: | |
event_data['timestamp'] = datetime.now() | |
for listener in self.event_listeners[event_type]: | |
listener(event_data) | |
# --- Enhanced Cross Domain Mastery --- | |
class CrossDomainMastery: | |
def __init__(self, max_models=MAX_DOMAIN_MODELS, max_mappings=MAX_TRANSFER_MAPPINGS): | |
self.domain_models = {} | |
self.transfer_mappings = {} | |
self.domain_experts = {} | |
self.max_models = max_models | |
self.max_mappings = max_mappings | |
self.usage_timestamps = {} | |
self.event_listeners = defaultdict(list) | |
def add_domain_model(self, domain: str, model: Any): | |
if len(self.domain_models) >= self.max_models: | |
self._remove_least_used_model() | |
self.domain_models[domain] = model | |
self.usage_timestamps[domain] = datetime.now() | |
self._trigger_event('model_added', {'domain': domain}) | |
def create_transfer_mapping(self, source_domain: str, | |
target_domain: str, | |
mapping_function: callable): | |
if len(self.transfer_mappings) >= self.max_mappings: | |
self._remove_least_used_mapping() | |
self.transfer_mappings[(source_domain, target_domain)] = mapping_function | |
self.usage_timestamps[(source_domain, target_domain)] = datetime.now() | |
self._trigger_event('mapping_created', {'source': source_domain, 'target': target_domain}) | |
def transfer_knowledge(self, source_domain: str, | |
target_domain: str, | |
knowledge: Any) -> Any: | |
if (source_domain, target_domain) in self.transfer_mappings: | |
mapping = self.transfer_mappings[(source_domain, target_domain)] | |
self.usage_timestamps[(source_domain, target_domain)] = datetime.now() | |
try: | |
transferred_knowledge = mapping(knowledge) | |
self._trigger_event('knowledge_transferred', {'source': source_domain, 'target': target_domain}) | |
return transferred_knowledge | |
except Exception as e: | |
print(f"Error during knowledge transfer: {e}") | |
self._trigger_event('transfer_error', {'source': source_domain, 'target': target_domain, 'error': str(e)}) | |
return None | |
return None | |
def register_domain_expert(self, domain: str, expert_function: callable): | |
self.domain_experts[domain] = expert_function | |
self._trigger_event('expert_registered', {'domain': domain}) | |
def consult_domain_expert(self, domain: str, query: Any) -> Any: | |
if domain in self.domain_experts: | |
expert = self.domain_experts[domain] | |
self.usage_timestamps[domain] = datetime.now() | |
try: | |
response = expert(query) | |
self._trigger_event('expert_consulted', {'domain': domain}) | |
return response | |
except Exception as e: | |
print(f"Error consulting domain expert: {e}") | |
self._trigger_event('expert_error', {'domain': domain, 'error': str(e)}) | |
return None | |
return None | |
def _remove_least_used_model(self): | |
lru_model = min(self.usage_timestamps, key=self.usage_timestamps.get) | |
if lru_model in self.domain_models: | |
del self.domain_models[lru_model] | |
del self.usage_timestamps[lru_model] | |
self._trigger_event('model_removed', {'domain': lru_model}) | |
def _remove_least_used_mapping(self): | |
lru_mapping = min(self.usage_timestamps, key=lambda k: self.usage_timestamps[k] if isinstance(k, tuple) else float('inf')) | |
if isinstance(lru_mapping, tuple) and lru_mapping in self.transfer_mappings: | |
del self.transfer_mappings[lru_mapping] | |
del self.usage_timestamps[lru_mapping] | |
self._trigger_event('mapping_removed', {'source': lru_mapping[0], 'target': lru_mapping[1]}) | |
def register_event_listener(self, event_type: str, listener: callable): | |
self.event_listeners[event_type].append(listener) | |
def _trigger_event(self, event_type: str, event_data: Dict[str, Any]): | |
if event_type in self.event_listeners: | |
event_data['timestamp'] = datetime.now() | |
for listener in self.event_listeners[event_type]: | |
listener(event_data) | |
# --- Enhanced Intuitive Multimodal Understanding --- | |
class IntuitiveMultimodalUnderstanding: | |
def __init__(self, visual_dim: int = VISUAL_EMBEDDING_DIM, text_dim: int = TEXT_EMBEDDING_DIM, audio_dim: int = AUDIO_EMBEDDING_DIM, fusion_dim: int = 2048, num_heads: int = 32): | |
self.visual_encoder = nn.Sequential( | |
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1), | |
nn.ReLU(), | |
nn.MaxPool2d(kernel_size=2, stride=2), | |
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1), | |
nn.ReLU(), | |
nn.MaxPool2d(kernel_size=2, stride=2), | |
nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1), | |
nn.ReLU(), | |
nn.MaxPool2d(kernel_size=2, stride=2), | |
nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1), | |
nn.ReLU(), | |
nn.MaxPool2d(kernel_size=2, stride=2), | |
nn.Flatten(), | |
nn.Linear(visual_dim * visual_dim // 1024 * 512, fusion_dim), | |
nn.LayerNorm(fusion_dim) | |
) | |
self.text_encoder = nn.Sequential( | |
nn.Linear(text_dim, 2048), | |
nn.ReLU(), | |
nn.Linear(2048, fusion_dim), | |
nn.LayerNorm(fusion_dim) | |
) | |
self.audio_encoder = nn.Sequential( | |
nn.Linear(audio_dim, 1024), | |
nn.ReLU(), | |
nn.Linear(1024, fusion_dim), | |
nn.LayerNorm(fusion_dim) | |
) | |
self.multimodal_fusion = nn.Sequential( | |
nn.Linear(fusion_dim * 3, fusion_dim * 2), | |
nn.ReLU(), | |
nn.Linear(fusion_dim * 2, fusion_dim), | |
nn.LayerNorm(fusion_dim) | |
) | |
self.fusion_dim = fusion_dim | |
self.attention = nn.MultiheadAttention(fusion_dim, num_heads) | |
self.event_listeners = defaultdict(list) | |
def process_multimodal_input(self, | |
visual_input: Optional[torch.Tensor] = None, | |
text_input: Optional[torch.Tensor] = None, | |
audio_input: Optional[torch.Tensor] = None) -> torch.Tensor: | |
encoded_inputs = [] | |
if visual_input is not None: | |
visual_features = self.visual_encoder(visual_input) | |
encoded_inputs.append(visual_features) | |
self._trigger_event('visual_processed') | |
if text_input is not None: | |
text_features = self.text_encoder(text_input) | |
encoded_inputs.append(text_features) | |
self._trigger_event('text_processed') | |
if audio_input is not None: | |
audio_features = self.audio_encoder(audio_input) | |
encoded_inputs.append(audio_features) | |
self._trigger_event('audio_processed') | |
if encoded_inputs: | |
concatenated_inputs = torch.cat(encoded_inputs, dim=1) | |
if concatenated_inputs.shape[1] != self.fusion_dim * 3: | |
concatenated_inputs = concatenated_inputs.view(-1, self.fusion_dim * 3) | |
fused_output = self.multimodal_fusion(concatenated_inputs) | |
# Apply attention mechanism | |
attn_output, attn_output_weights = self.attention(fused_output.unsqueeze(0), fused_output.unsqueeze(0), fused_output.unsqueeze(0)) | |
self._trigger_event('fusion_completed') | |
return attn_output.squeeze(0) | |
return torch.tensor([]) | |
def register_event_listener(self, event_type: str, listener: callable): | |
self.event_listeners[event_type].append(listener) | |
def _trigger_event(self, event_type: str): | |
if event_type in self.event_listeners: | |
for listener in self.event_listeners[event_type]: | |
listener({'event_type': event_type, 'timestamp': datetime.now()}) | |
# --- Enhanced Adaptive Learning --- | |
class AdaptiveLearning: | |
def __init__(self, initial_learning_rate=ADAPTIVE_LEARNING_INITIAL_LR, adaptation_threshold=NETWORK_ADAPTATION_THRESHOLD, min_learning_rate=ADAPTIVE_LEARNING_MIN_LR, max_learning_rate=ADAPTIVE_LEARNING_MAX_LR, learning_rate_decay=0.8, learning_rate_growth=1.3): | |
self.feedback_history = [] | |
self.learning_rate = initial_learning_rate | |
self.adaptation_threshold = adaptation_threshold | |
self.min_learning_rate = min_learning_rate | |
self.max_learning_rate = max_learning_rate | |
self.learning_rate_decay = learning_rate_decay | |
self.learning_rate_growth = learning_rate_growth | |
self.adjustment_history = [] | |
self.event_listeners = defaultdict(list) | |
def process_feedback(self, feedback: Dict[str, Any], timestamp: Optional[datetime]=None): | |
if timestamp is None: | |
timestamp = datetime.now() | |
self.feedback_history.append((feedback, timestamp)) | |
self._update_learning_parameters(feedback) | |
self._trigger_event('feedback_processed', {'performance': feedback.get('performance', 0.0)}) | |
def _update_learning_parameters(self, feedback: Dict[str, Any]): | |
performance = feedback.get('performance', 0.0) | |
adjustment_factor = self.learning_rate_growth if performance < self.adaptation_threshold else self.learning_rate_decay | |
new_learning_rate = self.learning_rate * adjustment_factor | |
new_learning_rate = max(min(new_learning_rate, self.max_learning_rate), self.min_learning_rate) | |
# Record adjustment with details | |
adjustment_details = { | |
'timestamp': datetime.now(), | |
'old_learning_rate': self.learning_rate, | |
'new_learning_rate': new_learning_rate, | |
'performance': performance, | |
'adjustment_factor': adjustment_factor | |
} | |
self.adjustment_history.append(adjustment_details) | |
self._trigger_event('learning_rate_adjusted', adjustment_details) | |
self.learning_rate = new_learning_rate | |
def get_learning_rate(self) -> float: | |
return self.learning_rate | |
def get_recent_feedback(self, time_window: int = 480) -> List[Dict[str, Any]]: | |
now = datetime.now() | |
recent_feedback = [f for f, t in self.feedback_history if (now - t).total_seconds() <= time_window] | |
return recent_feedback | |
def get_adjustment_history(self, last_n: Optional[int] = None) -> List[Dict[str, Any]]: | |
if last_n is None: | |
return self.adjustment_history | |
else: | |
return self.adjustment_history[-last_n:] | |
def register_event_listener(self, event_type: str, listener: callable): | |
self.event_listeners[event_type].append(listener) | |
def _trigger_event(self, event_type: str, event_data: Dict[str, Any]): | |
if event_type in self.event_listeners: | |
event_data['timestamp'] = datetime.now() | |
for listener in self.event_listeners[event_type]: | |
listener(event_data) | |
# --- Enhanced Emotional Intelligence --- | |
class EmotionalIntelligence: | |
def __init__(self, empathy_level: float = 0.9, max_history: int = 1000, emotion_categories: List[str] = EMOTION_CATEGORIES): | |
self.emotion_detector = nn.Sequential( | |
nn.Linear(1024, 4096), | |
nn.ReLU(), | |
nn.Linear(4096, 2048), | |
nn.ReLU(), | |
nn.Linear(2048, len(emotion_categories)), | |
nn.Softmax(dim=1) | |
) | |
self.response_generator = lambda c, e, t: f"Response with refined empathy {e} for {t} (context: {c})" | |
self.empathy_level = empathy_level | |
self.emotional_history = [] | |
self.max_history = max_history | |
self.emotion_categories = emotion_categories | |
self.event_listeners = defaultdict(list) | |
def analyze_emotional_context(self, input_data: Dict[str, Any]) -> Dict[str, float]: | |
emotional_scores = {} | |
text_features = input_data.get('text_features') | |
voice_features = input_data.get('voice_features') | |
if text_features is not None: | |
text_emotion = self._analyze_text_emotion(text_features) | |
emotional_scores.update({'text_' + k: v for k, v in text_emotion.items()}) | |
self._trigger_event('text_emotion_analyzed', text_emotion) | |
if voice_features is not None: | |
voice_emotion = self._analyze_voice_emotion(voice_features) | |
emotional_scores.update({'voice_' + k: v for k, v in voice_emotion.items()}) | |
self._trigger_event('voice_emotion_analyzed', voice_emotion) | |
if emotional_scores: | |
self.emotional_history.append((datetime.now(), emotional_scores)) | |
if len(self.emotional_history) > self.max_history: | |
self.emotional_history.pop(0) | |
return emotional_scores | |
def _analyze_text_emotion(self, text_features: torch.Tensor) -> Dict[str, float]: | |
emotion_output = self.emotion_detector(text_features).detach().numpy()[0] | |
return dict(zip(self.emotion_categories, emotion_output)) | |
def _analyze_voice_emotion(self, voice_features: torch.Tensor) -> Dict[str, float]: | |
emotion_output = self.emotion_detector(voice_features).detach().numpy()[0] | |
return dict(zip(self.emotion_categories, emotion_output)) | |
def generate_empathetic_response(self, | |
emotional_context: Dict[str, float], | |
response_type: str) -> str: | |
response = self.response_generator(emotional_context, self.empathy_level, response_type) | |
self._trigger_event('empathetic_response_generated', {'response': response}) | |
return response | |
def adjust_empathy_level(self, new_level: float): | |
self.empathy_level = max(0.0, min(1.0, new_level)) | |
self._trigger_event('empathy_level_adjusted', {'new_level': self.empathy_level}) | |
def get_emotional_state_over_time(self, time_window: int = 480) -> List[Dict[str, float]]: | |
now = datetime.now() | |
emotional_states = [e for t, e in self.emotional_history if (now - t).total_seconds() <= time_window] | |
return emotional_states | |
def register_event_listener(self, event_type: str, listener: callable): | |
self.event_listeners[event_type].append(listener) | |
def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None): | |
if event_type in self.event_listeners: | |
event_data = event_data or {} | |
event_data['timestamp'] = datetime.now() | |
for listener in self.event_listeners[event_type]: | |
listener(event_data) | |
# --- Enhanced Collaborative Problem Solver --- | |
class CollaborativeProblemSolver: | |
def __init__(self, consensus_threshold: float = COLLABORATIVE_CONSENSUS_THRESHOLD, max_agents: int = MAX_COLLABORATIVE_AGENTS, solution_history_size: int = SOLUTION_HISTORY_SIZE): | |
self.agent_pool = [] | |
self.collaboration_history = [] | |
self.consensus_threshold = consensus_threshold | |
self.max_agents = max_agents | |
self.solution_history_size = solution_history_size | |
self.event_listeners = defaultdict(list) | |
def add_agent(self, agent: Any): | |
if len(self.agent_pool) < self.max_agents: | |
self.agent_pool.append(agent) | |
self._trigger_event('agent_added', {'agent_id': id(agent)}) | |
else: | |
print("Maximum agent pool size reached. Cannot add more agents.") | |
def solve_collaboratively(self, problem: Dict[str, Any]) -> Dict[str, Any]: | |
solutions = [] | |
with concurrent.futures.ThreadPoolExecutor(max_workers=self.max_agents) as executor: | |
future_to_agent = {executor.submit(agent.solve, problem): agent for agent in self.agent_pool} | |
for future in concurrent.futures.as_completed(future_to_agent): | |
try: | |
solution = future.result() | |
solutions.append(solution) | |
self._trigger_event('solution_generated', {'agent_id': id(future_to_agent[future])}) | |
except Exception as exc: | |
print(f"Agent generated an exception: {exc}") | |
self._trigger_event('agent_exception', {'agent_id': id(future_to_agent[future]), 'exception': str(exc)}) | |
consensus_solution = self._reach_consensus(solutions) | |
self.collaboration_history.append({ | |
'problem': problem, | |
'individual_solutions': solutions, | |
'consensus': consensus_solution, | |
'timestamp': datetime.now() | |
}) | |
self._trigger_event('consensus_reached', {'consensus_solution': consensus_solution}) | |
# Trim collaboration history if it exceeds the maximum size | |
if len(self.collaboration_history) > self.solution_history_size: | |
self.collaboration_history = self.collaboration_history[-self.solution_history_size:] | |
return consensus_solution | |
def _reach_consensus(self, solutions: List[Dict[str, Any]]) -> Dict[str, Any]: | |
if not solutions: | |
return {} | |
scores = defaultdict(float) | |
for solution in solutions: | |
for key, value in solution.items(): | |
if isinstance(value, (str, int, float)): | |
scores[(key, value)] += solution.get('confidence', 1.0) | |
consensus_solution = {} | |
for (key, value), score in scores.items(): | |
if score >= self.consensus_threshold * len(solutions): | |
consensus_solution[key] = value | |
if not consensus_solution: | |
consensus_solution = max(solutions, key=lambda x: x.get('confidence', 0.0)) | |
return consensus_solution | |
def get_collaboration_history(self, last_n: Optional[int] = None) -> List[Dict[str, Any]]: | |
if last_n is None: | |
return self.collaboration_history | |
else: | |
return self.collaboration_history[-last_n:] | |
def register_event_listener(self, event_type: str, listener: callable): | |
self.event_listeners[event_type].append(listener) | |
def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None): | |
if event_type in self.event_listeners: | |
event_data = event_data or {} | |
event_data['timestamp'] = datetime.now() | |
for listener in self.event_listeners[event_type]: | |
listener(event_data) | |
# --- Enhanced Ethical Constraints --- | |
class EthicalConstraints: | |
def __init__(self, max_violations_history: int = MAX_ETHICAL_VIOLATIONS_HISTORY): | |
self.ethical_principles = set() | |
self.constraint_violations = [] | |
self.max_violations_history = max_violations_history | |
self.event_listeners = defaultdict(list) | |
def add_principle(self, principle: str, validation_function: callable): | |
self.ethical_principles.add((principle, validation_function)) | |
self._trigger_event('principle_added', {'principle': principle}) | |
def validate_action(self, action: Dict[str, Any]) -> Tuple[bool, List[str]]: | |
violations = [] | |
for principle, validator in self.ethical_principles: | |
if not validator(action): | |
violations.append(principle) | |
self._trigger_event('principle_violated', {'principle': principle, 'action': action}) | |
is_ethical = len(violations) == 0 | |
if not is_ethical: | |
self.constraint_violations.append({ | |
'action': action, | |
'violations': violations, | |
'timestamp': datetime.now() | |
}) | |
self._manage_violations_history() | |
return is_ethical, violations | |
def get_violation_history(self, last_n: Optional[int] = None) -> List[Dict[str, Any]]: | |
if last_n is None: | |
return self.constraint_violations | |
else: | |
return self.constraint_violations[-last_n:] | |
def _manage_violations_history(self): | |
if len(self.constraint_violations) > self.max_violations_history: | |
self.constraint_violations = self.constraint_violations[-self.max_violations_history:] | |
def register_event_listener(self, event_type: str, listener: callable): | |
self.event_listeners[event_type].append(listener) | |
def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None): | |
if event_type in self.event_listeners: | |
event_data = event_data or {} | |
event_data['timestamp'] = datetime.now() | |
for listener in self.event_listeners[event_type]: | |
listener(event_data) | |
# --- Enhanced Resource Optimizer --- | |
class ResourceOptimizer: | |
def __init__(self, max_resource_history: int = MAX_RESOURCE_HISTORY): | |
self.resource_usage = defaultdict(float) | |
self.optimization_strategies = {} | |
self.resource_history = [] | |
self.max_resource_history = max_resource_history | |
self.event_listeners = defaultdict(list) | |
def register_strategy(self, resource_type: str, strategy: callable): | |
self.optimization_strategies[resource_type] = strategy | |
self._trigger_event('strategy_registered', {'resource_type': resource_type}) | |
def optimize_resource_usage(self, resource_type: str, current_usage: float) -> Dict[str, Any]: | |
optimized_usage = current_usage | |
if resource_type in self.optimization_strategies: | |
strategy = self.optimization_strategies[resource_type] | |
optimized_usage = strategy(current_usage) | |
optimization_result = { | |
'type': resource_type, | |
'original_usage': current_usage, | |
'optimized_usage': optimized_usage, | |
'timestamp': datetime.now() | |
} | |
self.resource_history.append(optimization_result) | |
self._trigger_event('resource_optimized', optimization_result) | |
self._manage_resource_history() | |
self.resource_usage[resource_type] += optimized_usage | |
return optimization_result | |
def get_total_resource_usage(self) -> Dict[str, float]: | |
return dict(self.resource_usage) | |
def reset_resource_usage(self): | |
self.resource_usage.clear() | |
self._trigger_event('resource_usage_reset') | |
def _manage_resource_history(self): | |
if len(self.resource_history) > self.max_resource_history: | |
self.resource_history = self.resource_history[-self.max_resource_history:] | |
def register_event_listener(self, event_type: str, listener: callable): | |
self.event_listeners[event_type].append(listener) | |
def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None): | |
if event_type in self.event_listeners: | |
event_data = event_data or {} | |
event_data['timestamp'] = datetime.now() | |
for listener in self.event_listeners[event_type]: | |
listener(event_data) | |
# --- Enhanced Predictive Model --- | |
class PredictiveModel: | |
def __init__(self, max_models: int = MAX_PREDICTIVE_MODELS, max_prediction_history: int = MAX_PREDICTION_HISTORY): | |
self.models = {} | |
self.prediction_history = [] | |
self.max_models = max_models | |
self.max_prediction_history = max_prediction_history | |
self.model_usage_timestamps = {} | |
self.event_listeners = defaultdict(list) | |
def add_model(self, model_name: str, model: Any): | |
if len(self.models) >= self.max_models: | |
self._remove_least_used_model() | |
self.models[model_name] = model | |
self.model_usage_timestamps[model_name] = datetime.now() | |
self._trigger_event('model_added', {'model_name': model_name}) | |
def make_prediction(self, model_name: str, input_data: Dict[str, Any]) -> Dict[str, Any]: | |
if model_name in self.models: | |
model = self.models[model_name] | |
self.model_usage_timestamps[model_name] = datetime.now() | |
try: | |
prediction = model(input_data) | |
prediction_record = { | |
'model': model_name, | |
'input': input_data, | |
'prediction': prediction, | |
'timestamp': datetime.now() | |
} | |
self.prediction_history.append(prediction_record) | |
self._trigger_event('prediction_made', prediction_record) | |
self._manage_prediction_history() | |
return prediction | |
except Exception as e: | |
print(f"Error during prediction with model {model_name}: {e}") | |
error_record = {'model': model_name, 'error': str(e), 'timestamp': datetime.now()} | |
self._trigger_event('prediction_error', error_record) | |
return {'error': f'Prediction failed: {e}'} | |
return {'error': 'Model not found'} | |
def get_prediction_history(self, last_n: Optional[int] = None) -> List[Dict[str, Any]]: | |
if last_n is None: | |
return self.prediction_history | |
else: | |
return self.prediction_history[-last_n:] | |
def _remove_least_used_model(self): | |
lru_model = min(self.model_usage_timestamps, key=self.model_usage_timestamps.get) | |
if lru_model in self.models: | |
del self.models[lru_model] | |
del self.model_usage_timestamps[lru_model] | |
self._trigger_event('model_removed', {'model_name': lru_model}) | |
def _manage_prediction_history(self): | |
if len(self.prediction_history) > self.max_prediction_history: | |
self.prediction_history = self.prediction_history[-self.max_prediction_history:] | |
def register_event_listener(self, event_type: str, listener: callable): | |
self.event_listeners[event_type].append(listener) | |
def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None): | |
if event_type in self.event_listeners: | |
event_data = event_data or {} | |
event_data['timestamp'] = datetime.now() | |
for listener in self.event_listeners[event_type]: | |
listener(event_data) | |
# --- Enhanced Memory Consolidation --- | |
class MemoryConsolidation: | |
def __init__(self, short_term_capacity: int = SHORT_TERM_MEMORY_CAPACITY, consolidation_threshold: int = MEMORY_CONSOLIDATION_THRESHOLD, long_term_capacity: int = LONG_TERM_MEMORY_CAPACITY): | |
self.short_term_memory = [] | |
self.long_term_memory = {} | |
self.priority_queue = [] | |
self.short_term_capacity = short_term_capacity | |
self.consolidation_threshold = consolidation_threshold | |
self.long_term_capacity = long_term_capacity | |
self.access_counts = defaultdict(int) | |
self.event_listeners = defaultdict(list) | |
def add_memory(self, memory: Dict[str, Any], priority: float): | |
self.short_term_memory.append(memory) | |
heapq.heappush(self.priority_queue, (-priority, len(self.short_term_memory) - 1)) | |
self._trigger_event('memory_added', {'type': 'short_term', 'memory': memory}) | |
if len(self.short_term_memory) > self.short_term_capacity: | |
self._consolidate_memories() | |
self._manage_long_term_memory() | |
def _consolidate_memories(self): | |
memory_counts = defaultdict(int) | |
for memory in self.short_term_memory: | |
key = self._generate_memory_key(memory) | |
memory_counts[key] += 1 | |
consolidated = False | |
for key, count in memory_counts.items(): | |
if count >= self.consolidation_threshold: | |
if key not in self.long_term_memory: | |
for mem in self.short_term_memory: | |
if self._generate_memory_key(mem) == key: | |
self.long_term_memory[key] = mem | |
self._trigger_event('memory_added', {'type': 'long_term', 'memory': mem}) | |
consolidated = True | |
break | |
if consolidated: | |
self.short_term_memory = [mem for mem in self.short_term_memory if memory_counts[self._generate_memory_key(mem)] < self.consolidation_threshold] | |
self.priority_queue = [(-p, i) for p, i in self.priority_queue if i < len(self.short_term_memory)] | |
heapq.heapify(self.priority_queue) | |
def _generate_memory_key(self, memory: Dict[str, Any]) -> str: | |
key_parts = [str(memory.get('type', 'unknown'))] | |
if 'timestamp' in memory: | |
key_parts.append(str(memory['timestamp'].timestamp())) | |
if 'content' in memory: | |
if isinstance(memory['content'], str): | |
key_parts.append(memory['content'][:100]) # Increased length for better key uniqueness | |
elif isinstance(memory['content'], dict): | |
key_parts.extend([f"{k}:{str(v)[:100]}" for k, v in memory['content'].items()]) | |
return '_'.join(key_parts) | |
def retrieve_long_term_memory(self, key: str) -> Optional[Dict[str, Any]]: | |
if key in self.long_term_memory: | |
self.access_counts[key] += 1 | |
self._trigger_event('memory_retrieved', {'type': 'long_term', 'key': key}) | |
return self.long_term_memory[key] | |
return None | |
def _manage_long_term_memory(self): | |
if len(self.long_term_memory) > self.long_term_capacity: | |
# Remove least frequently accessed memories | |
sorted_memories = sorted(self.long_term_memory.items(), key=lambda item: self.access_counts[item[0]]) | |
keys_to_remove = [key for key, _ in sorted_memories[:len(self.long_term_memory) - self.long_term_capacity]] | |
for key in keys_to_remove: | |
del self.long_term_memory[key] | |
del self.access_counts[key] | |
self._trigger_event('memory_removed', {'type': 'long_term', 'key': key}) | |
def register_event_listener(self, event_type: str, listener: callable): | |
self.event_listeners[event_type].append(listener) | |
def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None): | |
if event_type in self.event_listeners: | |
event_data = event_data or {} | |
event_data['timestamp'] = datetime.now() | |
for listener in self.event_listeners[event_type]: | |
listener(event_data) | |
# --- Enhanced Cognitive Style Manager --- | |
class CognitiveStyleManager: | |
def __init__(self, max_style_history: int = MAX_COGNITIVE_STYLE_HISTORY): | |
self.available_styles = {} | |
self.active_style = None | |
self.style_history = [] | |
self.max_style_history = max_style_history | |
self.event_listeners = defaultdict(list) | |
def register_style(self, style_name: str, style_parameters: Dict[str, Any]): | |
self.available_styles[style_name] = style_parameters | |
self._trigger_event('style_registered', {'style_name': style_name}) | |
def activate_style(self, style_name: str) -> bool: | |
if style_name in self.available_styles: | |
self.active_style = style_name | |
self.style_history.append((style_name, datetime.now())) | |
if len(self.style_history) > self.max_style_history: | |
self.style_history.pop(0) | |
self._trigger_event('style_activated', {'style_name': style_name}) | |
return True | |
return False | |
def get_current_style_parameters(self) -> Optional[Dict[str, Any]]: | |
if self.active_style: | |
return self.available_styles[self.active_style] | |
return None | |
def get_style_history(self, last_n: Optional[int] = None) -> List[Tuple[str, datetime]]: | |
if last_n is None: | |
return self.style_history | |
else: | |
return self.style_history[-last_n:] | |
def register_event_listener(self, event_type: str, listener: callable): | |
self.event_listeners[event_type].append(listener) | |
def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None): | |
if event_type in self.event_listeners: | |
event_data = event_data or {} | |
event_data['timestamp'] = datetime.now() | |
for listener in self.event_listeners[event_type]: | |
listener(event_data) | |
# --- Enhanced Uncertainty Quantifier --- | |
class UncertaintyQuantifier: | |
def __init__(self): | |
self.uncertainty_metrics = {} | |
self.confidence_thresholds = {} | |
self.event_listeners = defaultdict(list) | |
def quantify_uncertainty(self, | |
prediction: Any, | |
method: str = 'bayesian', | |
**kwargs) -> Dict[str, float]: | |
if method == 'bayesian': | |
result = self._bayesian_uncertainty(prediction, **kwargs) | |
elif method == 'ensemble': | |
result = self._ensemble_uncertainty(prediction, **kwargs) | |
elif method == 'confidence_scores': | |
result = self._confidence_score_uncertainty(prediction, **kwargs) | |
elif method == 'gaussian_processes': | |
result = self._gaussian_process_uncertainty(prediction, **kwargs) | |
else: | |
result = {'error': 'Unsupported uncertainty quantification method'} | |
self._trigger_event('uncertainty_quantified', {'method': method, 'result': result}) | |
return result | |
def _bayesian_uncertainty(self, prediction: Any, **kwargs) -> Dict[str, float]: | |
if isinstance(prediction, dict) and 'probabilities' in prediction: | |
probabilities = prediction['probabilities'] | |
if isinstance(probabilities, list): | |
entropy = -sum(p * np.log2(p) for p in probabilities if p > 0) | |
return {'bayesian_entropy': entropy} | |
return {'error': 'Bayesian uncertainty not applicable'} | |
def _ensemble_uncertainty(self, prediction: Any, **kwargs) -> Dict[str, float]: | |
if isinstance(prediction, list): | |
variances = np.var(prediction, axis=0) | |
return {'ensemble_variance': variances.tolist() if isinstance(variances, np.ndarray) else variances} | |
return {'error': 'Ensemble uncertainty not applicable'} | |
def _confidence_score_uncertainty(self, prediction: Any, **kwargs) -> Dict[str, float]: | |
if isinstance(prediction, dict) and 'confidence' in prediction: | |
confidence = prediction['confidence'] | |
uncertainty = 1.0 - confidence | |
return {'uncertainty': uncertainty} | |
return {'error': 'Confidence score uncertainty not applicable'} | |
def _gaussian_process_uncertainty(self, prediction: Any, **kwargs) -> Dict[str, float]: | |
if isinstance(prediction, dict) and 'mean' in prediction and 'std' in prediction: | |
std_dev = prediction['std'] | |
return {'gaussian_process_std': std_dev} | |
return {'error': 'Gaussian process uncertainty not applicable'} | |
def register_event_listener(self, event_type: str, listener: callable): | |
self.event_listeners[event_type].append(listener) | |
def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None): | |
if event_type in self.event_listeners: | |
event_data = event_data or {} | |
event_data['timestamp'] = datetime.now() | |
for listener in self.event_listeners[event_type]: | |
listener(event_data) | |
# --- Enhanced Goal Alignment System --- | |
class GoalAlignmentSystem: | |
def __init__(self, alignment_threshold=GOAL_ALIGNMENT_THRESHOLD, max_goals: int = MAX_GOALS, max_safety_constraints: int = MAX_SAFETY_CONSTRAINTS): | |
self.goals = [] | |
self.alignment_metrics = {} | |
self.safety_constraints = set() | |
self.alignment_threshold = alignment_threshold | |
self.max_goals = max_goals | |
self.max_safety_constraints = max_safety_constraints | |
self.event_listeners = defaultdict(list) | |
def add_goal(self, goal: Dict[str, Any]): | |
if len(self.goals) >= self.max_goals: | |
self._remove_lowest_priority_goal() | |
if not goal.get('id'): | |
goal['id'] = f"goal_{len(self.goals)}" | |
self.goals.append(goal) | |
self._update_alignment_metrics(goal) | |
self._trigger_event('goal_added', {'goal_id': goal['id']}) | |
def _remove_lowest_priority_goal(self): | |
lowest_priority_goal = min(self.goals, key=lambda g: g.get('priority', 0)) | |
self.goals.remove(lowest_priority_goal) | |
self._trigger_event('goal_removed', {'goal_id': lowest_priority_goal['id']}) | |
def _update_alignment_metrics(self, goal: Dict[str, Any]): | |
for existing_goal in self.goals: | |
if existing_goal['id'] != goal['id']: | |
alignment_score = self._calculate_alignment(existing_goal, goal) | |
self.alignment_metrics[(existing_goal['id'], goal['id'])] = alignment_score | |
self.alignment_metrics[(goal['id'], existing_goal['id'])] = alignment_score | |
def _calculate_alignment(self, goal1: Dict[str, Any], goal2: Dict[str, Any]) -> float: | |
similarity = 0.0 | |
if goal1.get('type') == goal2.get('type'): | |
similarity += 0.4 | |
if goal1.get('target') == goal2.get('target'): | |
similarity += 0.4 | |
if goal1.get('priority', 0) == goal2.get('priority', 0): | |
similarity += 0.2 | |
else: | |
similarity += 0.1 | |
return min(similarity, 1.0) | |
def check_alignment(self, goal_id: str) -> Dict[str, float]: | |
alignments = {} | |
for other_goal in self.goals: | |
if other_goal['id'] != goal_id: | |
alignment_score = self.alignment_metrics.get((goal_id, other_goal['id']), 0.0) | |
if alignment_score >= self.alignment_threshold: | |
alignments[other_goal['id']] = alignment_score | |
return alignments | |
def add_safety_constraint(self, constraint: str, details: Optional[Dict[str, Any]] = None): | |
if len(self.safety_constraints) < self.max_safety_constraints: | |
self.safety_constraints.add((constraint, details or {})) | |
self._trigger_event('safety_constraint_added', {'constraint': constraint, 'details': details}) | |
else: | |
print("Maximum number of safety constraints reached.") | |
def validate_goal_against_constraints(self, goal: Dict[str, Any]) -> Tuple[bool, List[str]]: | |
violations = [] | |
for constraint, details in self.safety_constraints: | |
if "no_harm" == constraint and goal.get("action") == "harm": | |
violations.append(constraint) | |
if "user_autonomy" == constraint and not goal.get("user_approved", False): | |
violations.append(constraint) | |
if "avoid_deception" == constraint and goal.get("deceptive", False): | |
violations.append(constraint) | |
if "ensure_privacy" == constraint and goal.get("privacy_risk", False): | |
violations.append(constraint) | |
if "promote_fairness" == constraint and goal.get("unfair", False): | |
violations.append(constraint) | |
is_safe = len(violations) == 0 | |
return is_safe, violations | |
def register_event_listener(self, event_type: str, listener: callable): | |
self.event_listeners[event_type].append(listener) | |
def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None): | |
if event_type in self.event_listeners: | |
event_data = event_data or {} | |
event_data['timestamp'] = datetime.now() | |
for listener in self.event_listeners[event_type]: | |
listener(event_data) | |
# --- Enhanced Multi-Language Creativity --- | |
class MultiLanguageCreativity: | |
def __init__(self, max_languages: int = MAX_LANGUAGES): | |
self.language_models = {} | |
self.creativity_engines = {} | |
self.max_languages = max_languages | |
self.event_listeners = defaultdict(list) | |
def add_language_model(self, language: str, model: Any): | |
if len(self.language_models) < self.max_languages: | |
self.language_models[language] = model | |
self._trigger_event('language_model_added', {'language': language}) | |
else: | |
print("Maximum number of language models reached.") | |
def add_creativity_engine(self, language: str, engine: Any): | |
if len(self.creativity_engines) < self.max_languages: | |
self.creativity_engines[language] = engine | |
self._trigger_event('creativity_engine_added', {'language': language}) | |
else: | |
print("Maximum number of creativity engines reached.") | |
def generate_creative_content(self, | |
prompt: str, | |
language: str, | |
creativity_level: float) -> str: | |
if language in self.language_models: | |
if language in self.creativity_engines: | |
base_content = self.language_models[language](prompt) | |
creative_content = self.creativity_engines[language]( | |
base_content, | |
creativity_level | |
) | |
self._trigger_event('creative_content_generated', {'language': language, 'creativity_level': creativity_level}) | |
return creative_content | |
else: | |
return self.language_models[language](prompt) | |
return f"Unsupported language: {language}" | |
def list_supported_languages(self) -> List[str]: | |
return list(self.language_models.keys()) | |
def register_event_listener(self, event_type: str, listener: callable): | |
self.event_listeners[event_type].append(listener) | |
def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None): | |
if event_type in self.event_listeners: | |
event_data = event_data or {} | |
event_data['timestamp'] = datetime.now() | |
for listener in self.event_listeners[event_type]: | |
listener(event_data) | |
# --- Enhanced Quantum Processor --- | |
class QuantumProcessor: | |
def __init__(self, max_results_history: int = QUANTUM_MAX_RESULTS_HISTORY): | |
self.quantum_circuit = None | |
self.classical_interface = None | |
self.results_history = [] | |
self.max_results_history = max_results_history | |
self.event_listeners = defaultdict(list) | |
def initialize_quantum_circuit(self, num_qubits: int): | |
print(f"Initializing quantum circuit with {num_qubits} qubits.") | |
self.quantum_circuit = {"num_qubits": num_qubits, "circuit": []} | |
self._trigger_event('quantum_circuit_initialized', {'num_qubits': num_qubits}) | |
def add_gate(self, gate_type: str, target_qubits: List[int], params: Optional[Dict[str, Any]] = None): | |
if self.quantum_circuit is None: | |
raise ValueError("Quantum circuit not initialized") | |
self.quantum_circuit["circuit"].append({"gate": gate_type, "targets": target_qubits, "params": params or {}}) | |
print(f"Added {gate_type} gate on qubits {target_qubits} with params {params}") | |
self._trigger_event('gate_added', {'gate_type': gate_type, 'target_qubits': target_qubits, 'params': params}) | |
def run_quantum_algorithm(self, | |
algorithm_type: str, | |
input_data: Dict[str, Any]) -> Dict[str, Any]: | |
if self.quantum_circuit is None: | |
return {"error": "Quantum circuit not initialized"} | |
try: | |
print(f"Executing {algorithm_type} quantum algorithm") | |
if algorithm_type == "Shor's": | |
result = self._shors_algorithm(input_data) | |
elif algorithm_type == "Grover's": | |
result = self._grovers_algorithm(input_data) | |
elif algorithm_type == "QAOA": | |
result = self._qaoa_algorithm(input_data) | |
elif algorithm_type == "VQE": | |
result = self._vqe_algorithm(input_data) | |
elif algorithm_type == "HHL": | |
result = self._hhl_algorithm(input_data) | |
else: | |
result = self._execute_quantum_computation(algorithm_type, input_data) | |
result_record = { | |
"algorithm": algorithm_type, | |
"input": input_data, | |
"result": result, | |
"timestamp": datetime.now() | |
} | |
self.results_history.append(result_record) | |
self._trigger_event('quantum_algorithm_executed', result_record) | |
self._manage_results_history() | |
return {"result": result, "status": "success"} | |
except Exception as e: | |
print(f"Error during quantum computation: {e}") | |
error_record = {"error": str(e), "status": "failed", "timestamp": datetime.now()} | |
self._trigger_event('quantum_computation_error', error_record) | |
return {"error": str(e), "status": "failed"} | |
def _execute_quantum_computation(self, algorithm_type: str, input_data: Dict[str, Any]) -> Any: | |
print(f"Simulating {algorithm_type} with input: {input_data}") | |
time.sleep(random.uniform(1, 3)) | |
if random.random() < 0.2: # Increased error rate for simulation | |
raise Exception("Quantum decoherence error") | |
return {"simulated_output": random.randint(0, 1000)} # Increased range for simulation | |
def _shors_algorithm(self, input_data: Dict[str, Any]) -> Any: | |
number_to_factor = input_data.get("number", 15) | |
print(f"Applying Shor's algorithm to factor {number_to_factor}") | |
if number_to_factor == 15: | |
return {"factors": [3, 5]} | |
elif number_to_factor == 21: | |
return {"factors": [3, 7]} | |
else: | |
return {"factors": [1, number_to_factor]} | |
def _grovers_algorithm(self, input_data: Dict[str, Any]) -> Any: | |
search_space = input_data.get("search_space", [0, 1, 2, 3]) | |
target_element = input_data.get("target", 2) | |
print(f"Applying Grover's algorithm to find {target_element} in {search_space}") | |
if target_element in search_space: | |
return {"found": target_element} | |
else: | |
return {"found": None} | |
def _qaoa_algorithm(self, input_data: Dict[str, Any]) -> Any: | |
graph = input_data.get("graph", {"nodes": [0, 1], "edges": [[0, 1]]}) | |
print(f"Applying QAOA algorithm to graph {graph}") | |
return {"optimal_solution": [0, 1]} | |
def _vqe_algorithm(self, input_data: Dict[str, Any]) -> Any: | |
hamiltonian = input_data.get("hamiltonian", "H2") | |
print(f"Applying VQE algorithm to find the ground state of {hamiltonian}") | |
if hamiltonian == "H2": | |
return {"ground_state_energy": -1.137} | |
else: | |
return {"ground_state_energy": -1.0} | |
def _hhl_algorithm(self, input_data: Dict[str, Any]) -> Any: | |
matrix = input_data.get("matrix", [[1.5, 0.5], [0.5, 1.5]]) | |
vector = input_data.get("vector", [0, 1]) | |
print(f"Applying HHL algorithm to solve linear system with matrix {matrix} and vector {vector}") | |
return {"solution": [0.5, 0.5]} | |
def get_results_history(self, last_n: Optional[int] = None) -> List[Dict[str, Any]]: | |
if last_n is None: | |
return self.results_history | |
else: | |
return self.results_history[-last_n:] | |
def _manage_results_history(self): | |
if len(self.results_history) > self.max_results_history: | |
self.results_history = self.results_history[-self.max_results_history:] | |
def register_event_listener(self, event_type: str, listener: callable): | |
self.event_listeners[event_type].append(listener) | |
def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None): | |
if event_type in self.event_listeners: | |
event_data = event_data or {} | |
event_data['timestamp'] = datetime.now() | |
for listener in self.event_listeners[event_type]: | |
listener(event_data) | |
# --- Enhanced Adaptive Neural Network --- | |
class AdaptiveNeuralNetwork: | |
def __init__(self, input_dim: int, hidden_dims: List[int], output_dim: int = 10, activation_fn: str = "relu", dropout_rate: float = 0.0, max_layers: int = ADAPTIVE_NEURAL_NETWORK_MAX_LAYERS, max_layer_size: int = ADAPTIVE_NEURAL_NETWORK_MAX_LAYER_SIZE): | |
self.layers = nn.ModuleList() | |
self.input_dim = input_dim | |
self.hidden_dims = hidden_dims | |
self.output_dim = output_dim | |
self.activation_fn = self._get_activation_fn(activation_fn) | |
self.dropout_rate = dropout_rate | |
self.max_layers = max_layers | |
self.max_layer_size = max_layer_size | |
self._build_network() | |
self.event_listeners = defaultdict(list) | |
def _get_activation_fn(self, activation_fn: str): | |
if activation_fn == "relu": | |
return nn.ReLU() | |
elif activation_fn == "sigmoid": | |
return nn.Sigmoid() | |
elif activation_fn == "tanh": | |
return nn.Tanh() | |
elif activation_fn == "leaky_relu": | |
return nn.LeakyReLU() | |
elif activation_fn == "elu": | |
return nn.ELU() | |
elif activation_fn == "prelu": | |
return nn.PReLU() | |
elif activation_fn == "selu": | |
return nn.SELU() | |
else: | |
raise ValueError(f"Invalid activation function: {activation_fn}") | |
def _build_network(self): | |
self.layers.clear() | |
dims = [self.input_dim] + self.hidden_dims + [self.output_dim] | |
for i in range(len(dims) - 1): | |
self.layers.append(nn.Linear(dims[i], dims[i + 1])) | |
if i < len(dims) - 2: | |
self.layers.append(self.activation_fn) | |
if self.dropout_rate > 0.0: | |
self.layers.append(nn.Dropout(self.dropout_rate)) | |
self._trigger_event('network_built', {'hidden_dims': self.hidden_dims}) | |
def adapt_architecture(self, performance_metrics: Dict[str, float]): | |
if performance_metrics.get('loss', 1.0) > 0.5 and len(self.hidden_dims) < self.max_layers: | |
new_dim = min(self.hidden_dims[-1] * 2, self.max_layer_size) if self.hidden_dims else self.input_dim | |
self.hidden_dims.append(new_dim) | |
self._build_network() | |
print(f"Added new hidden layer. New architecture: {self.hidden_dims}") | |
self._trigger_event('layer_added', {'new_dim': new_dim}) | |
elif performance_metrics.get('accuracy', 0.0) < NETWORK_ADAPTATION_THRESHOLD and self.hidden_dims: | |
if self.hidden_dims[-1] < self.max_layer_size: | |
self.hidden_dims[-1] = min(int(self.hidden_dims[-1] * 1.5), self.max_layer_size) | |
self._build_network() | |
print(f"Increased last hidden layer size. New architecture: {self.hidden_dims}") | |
self._trigger_event('layer_expanded', {'new_size': self.hidden_dims[-1]}) | |
elif performance_metrics.get('loss', 1.0) < 0.1 and len(self.hidden_dims) > 1: | |
self.hidden_dims.pop() | |
self._build_network() | |
print(f"Removed last hidden layer due to potential overfitting. New architecture: {self.hidden_dims}") | |
self._trigger_event('layer_removed', {}) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
for layer in self.layers: | |
x = layer(x) | |
return x | |
def get_num_layers(self) -> int: | |
return len(self.hidden_dims) + 1 | |
def get_layer_sizes(self) -> List[int]: | |
return [self.input_dim] + self.hidden_dims + [self.output_dim] | |
def register_event_listener(self, event_type: str, listener: callable): | |
self.event_listeners[event_type].append(listener) | |
def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None): | |
if event_type in self.event_listeners: | |
event_data = event_data or {} | |
event_data['timestamp'] = datetime.now() | |
for listener in self.event_listeners[event_type]: | |
listener(event_data) | |
# --- Enhanced Real-World Interaction --- | |
class RealWorldInteraction: | |
def __init__(self, max_interaction_history: int = MAX_INTERACTION_HISTORY): | |
self.sensor_interfaces = {} | |
self.actuator_interfaces = {} | |
self.interaction_history = [] | |
self.max_interaction_history = max_interaction_history | |
self.event_listeners = defaultdict(list) | |
def register_sensor(self, sensor_name: str, sensor_interface: Any): | |
self.sensor_interfaces[sensor_name] = sensor_interface | |
self._trigger_event('sensor_registered', {'sensor_name': sensor_name}) | |
def register_actuator(self, actuator_name: str, actuator_interface: Any): | |
self.actuator_interfaces[actuator_name] = actuator_interface | |
self._trigger_event('actuator_registered', {'actuator_name': actuator_name}) | |
def process_sensor_data(self, sensor_name: str) -> Dict[str, Any]: | |
if sensor_name in self.sensor_interfaces: | |
data = self.sensor_interfaces[sensor_name].read() | |
interaction_record = { | |
'type': 'sensor_read', | |
'sensor': sensor_name, | |
'data': data, | |
'timestamp': datetime.now() | |
} | |
self.interaction_history.append(interaction_record) | |
self._trigger_event('sensor_data_processed', interaction_record) | |
self._manage_interaction_history() | |
return data | |
return {'error': f'Sensor {sensor_name} not found'} | |
def execute_action(self, actuator_name: str, action: Dict[str, Any]) -> bool: | |
if actuator_name in self.actuator_interfaces: | |
success = self.actuator_interfaces[actuator_name].execute(action) | |
interaction_record = { | |
'type': 'actuator_execute', | |
'actuator': actuator_name, | |
'action': action, | |
'success': success, | |
'timestamp': datetime.now() | |
} | |
self.interaction_history.append(interaction_record) | |
self._trigger_event('action_executed', interaction_record) | |
self._manage_interaction_history() | |
return success | |
return False | |
def get_interaction_history(self, last_n: Optional[int] = None) -> List[Dict[str, Any]]: | |
if last_n is None: | |
return self.interaction_history | |
else: | |
return self.interaction_history[-last_n:] | |
def _manage_interaction_history(self): | |
if len(self.interaction_history) > self.max_interaction_history: | |
self.interaction_history = self.interaction_history[-self.max_interaction_history:] | |
def register_event_listener(self, event_type: str, listener: callable): | |
self.event_listeners[event_type].append(listener) | |
def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None): | |
if event_type in self.event_listeners: | |
event_data = event_data or {} | |
event_data['timestamp'] = datetime.now() | |
for listener in self.event_listeners[event_type]: | |
listener(event_data) | |
# --- Enhanced Modular Architecture --- | |
class ModularArchitecture: | |
def __init__(self): | |
self.modules = {} | |
self.dependencies = defaultdict(set) | |
self.module_configs = {} | |
self.initialization_status = {} | |
self.event_listeners = defaultdict(list) | |
def register_module(self, module_name: str, | |
module_instance: Any, | |
config: Optional[Dict[str, Any]] = None): | |
self.modules[module_name] = module_instance | |
self.initialization_status[module_name] = False | |
if config: | |
self.module_configs[module_name] = config | |
self._trigger_event('module_registered', {'module_name': module_name}) | |
def add_dependency(self, module_name: str, depends_on: str): | |
self.dependencies[module_name].add(depends_on) | |
self._trigger_event('dependency_added', {'module_name': module_name, 'depends_on': depends_on}) | |
def get_module(self, module_name: str) -> Optional[Any]: | |
return self.modules.get(module_name) | |
def get_module_dependencies(self, module_name: str) -> Set[str]: | |
return self.dependencies.get(module_name, set()) | |
def get_module_config(self, module_name: str) -> Optional[Dict[str, Any]]: | |
return self.module_configs.get(module_name) | |
def initialize_modules(self): | |
initialized = set() | |
while len(initialized) < len(self.modules): | |
initialized_this_round = set() | |
for module_name, module in self.modules.items(): | |
if module_name not in initialized: | |
deps = self.get_module_dependencies(module_name) | |
if all(dep in initialized for dep in deps): | |
if hasattr(module, 'initialize') and callable(module.initialize): | |
config = self.get_module_config(module_name) | |
try: | |
if config: | |
module.initialize(**config) | |
else: | |
module.initialize() | |
self._trigger_event('module_initialized', {'module_name': module_name}) | |
except Exception as e: | |
print(f"Error initializing module {module_name}: {e}") | |
self._trigger_event('module_initialization_error', {'module_name': module_name, 'error': str(e)}) | |
initialized.add(module_name) | |
initialized_this_round.add(module_name) | |
if not initialized_this_round: | |
raise Exception("Circular dependencies or missing modules detected.") | |
def register_event_listener(self, event_type: str, listener: callable): | |
self.event_listeners[event_type].append(listener) | |
def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None): | |
if event_type in self.event_listeners: | |
event_data = event_data or {} | |
event_data['timestamp'] = datetime.now() | |
for listener in self.event_listeners[event_type]: | |
listener(event_data) | |
class EnhancedCognitiveSystem: | |
def __init__(self, training_data_path: Optional[str] = None): | |
self.context_manager = GeneralizedContextManager() | |
self.knowledge_graph = DynamicKnowledgeGraph() | |
self.causal_engine = CausalEngine() | |
self.cross_domain = CrossDomainMastery() | |
self.multimodal = IntuitiveMultimodalUnderstanding() | |
self.adaptive_learning = AdaptiveLearning() | |
self.emotional = EmotionalIntelligence() | |
self.collaborative = CollaborativeProblemSolver() | |
self.ethical = EthicalConstraints() | |
self.resource_optimizer = ResourceOptimizer() | |
self.predictive = PredictiveModel() | |
self.memory = MemoryConsolidation() | |
self.cognitive_style = CognitiveStyleManager() | |
self.uncertainty = UncertaintyQuantifier() | |
self.goal_alignment = GoalAlignmentSystem() | |
self.creativity = MultiLanguageCreativity() | |
self.quantum = QuantumProcessor() | |
self.neural_network = AdaptiveNeuralNetwork(TEXT_EMBEDDING_DIM, [8192, 4096, 2048], output_dim=RESPONSE_MODEL_OUTPUT_DIM) | |
self.real_world = RealWorldInteraction() | |
self.architecture = ModularArchitecture() | |
# Register modules with the architecture | |
self.architecture.register_module("context_manager", self.context_manager) | |
self.architecture.register_module("knowledge_graph", self.knowledge_graph) | |
self.architecture.register_module("causal_engine", self.causal_engine) | |
self.architecture.register_module("cross_domain", self.cross_domain) | |
self.architecture.register_module("multimodal", self.multimodal) | |
self.architecture.register_module("adaptive_learning", self.adaptive_learning) | |
self.architecture.register_module("emotional", self.emotional) | |
self.architecture.register_module("collaborative", self.collaborative) | |
self.architecture.register_module("ethical", self.ethical) | |
self.architecture.register_module("resource_optimizer", self.resource_optimizer) | |
self.architecture.register_module("predictive", self.predictive) | |
self.architecture.register_module("memory", self.memory) | |
self.architecture.register_module("cognitive_style", self.cognitive_style) | |
self.architecture.register_module("uncertainty", self.uncertainty) | |
self.architecture.register_module("goal_alignment", self.goal_alignment) | |
self.architecture.register_module("creativity", self.creativity) | |
self.architecture.register_module("quantum", self.quantum) | |
self.architecture.register_module("neural_network", self.neural_network) | |
self.architecture.register_module("real_world", self.real_world) | |
# Define dependencies between modules | |
self.architecture.add_dependency("knowledge_graph", "context_manager") | |
self.architecture.add_dependency("causal_engine", "knowledge_graph") | |
self.architecture.add_dependency("multimodal", "neural_network") | |
self.architecture.add_dependency("emotional", "multimodal") | |
self.architecture.add_dependency("collaborative", "goal_alignment") | |
self.architecture.add_dependency("predictive", "neural_network") | |
self.architecture.add_dependency("predictive", "uncertainty") | |
self.architecture.add_dependency("memory", "context_manager") | |
self.architecture.add_dependency("goal_alignment", "ethical") | |
# Initialize modules | |
self.architecture.initialize_modules() | |
# Initialize training data path | |
self.training_data_path = training_data_path or "training_data.csv" | |
self.response_model = ResponseModel(TEXT_EMBEDDING_DIM, RESPONSE_MODEL_HIDDEN_DIM, RESPONSE_MODEL_OUTPUT_DIM) | |
if os.path.exists(self.training_data_path): | |
self.load_training_data(self.training_data_path) | |
self.train_response_model() | |
# Register event listeners | |
self.register_event_listeners() | |
def load_training_data(self, file_path: str): | |
try: | |
self.training_data = pd.read_csv(file_path) | |
except Exception as e: | |
print(f"Error reading CSV file: {e}") | |
def create_dataset(self, test_size=0.2, random_state=42): | |
prompts = self.training_data['prompt'].tolist() | |
responses = self.training_data['response'].tolist() | |
# Convert prompts and responses to numerical features | |
prompt_features = [self.numericalize_text(p) for p in prompts] | |
response_features = [self.numericalize_text(r) for r in responses] | |
# Pad sequences to the maximum sequence length | |
max_len = max(max(len(p) for p in prompt_features), max(len(r) for r in response_features)) | |
prompt_features = [self.pad_sequence(p, max_len) for p in prompt_features] | |
response_features = [self.pad_sequence(r, max_len) for r in response_features] | |
# Split data into training and testing sets | |
X_train, X_test, y_train, y_test = train_test_split( | |
prompt_features, response_features, test_size=test_size, random_state=random_state | |
) | |
# Create TensorDatasets | |
train_dataset = TensorDataset(torch.tensor(X_train, dtype=torch.float32), | |
torch.tensor(y_train, dtype=torch.float32)) | |
test_dataset = TensorDataset(torch.tensor(X_test, dtype=torch.float32), | |
torch.tensor(y_test, dtype=torch.float32)) | |
return train_dataset, test_dataset | |
def numericalize_text(self, text: str) -> List[float]: | |
# Convert text to numerical features using a simple method (e.g., ASCII values) | |
return [float(ord(c)) for c in text] | |
def pad_sequence(self, sequence: List[float], max_len: int) -> List[float]: | |
# Pad sequences to the maximum length | |
if len(sequence) < max_len: | |
return sequence + [0.0] * (max_len - len(sequence)) | |
return sequence[:max_len] | |
def train_response_model(self, batch_size=TRAINING_BATCH_SIZE, epochs=TRAINING_EPOCHS, learning_rate=TRAINING_LEARNING_RATE): | |
train_dataset, test_dataset = self.create_dataset() | |
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) | |
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False) | |
optimizer = torch.optim.Adam(self.response_model.parameters(), lr=learning_rate) | |
criterion = nn.MSELoss() | |
for epoch in range(epochs): | |
self.response_model.train() | |
train_loss = 0 | |
for batch in tqdm(train_loader, desc=f"Epoch {epoch+1}/{epochs} [Training]"): | |
optimizer.zero_grad() | |
inputs, targets = batch | |
outputs = self.response_model(inputs) | |
loss = criterion(outputs, targets) | |
loss.backward() | |
optimizer.step() | |
train_loss += loss.item() | |
avg_train_loss = train_loss / len(train_loader) | |
self.response_model.eval() | |
test_loss = 0 | |
with torch.no_grad(): | |
for batch in tqdm(test_loader, desc=f"Epoch {epoch+1}/{epochs} [Testing]"): | |
inputs, targets = batch | |
outputs = self.response_model(inputs) | |
loss = criterion(outputs, targets) | |
test_loss += loss.item() | |
avg_test_loss = test_loss / len(test_loader) | |
print(f"Epoch {epoch+1}/{epochs}, Training Loss: {avg_train_loss:.4f}, Testing Loss: {avg_test_loss:.4f}") | |
print("Training complete.") | |
def process_input(self, input_data: Dict[str, Any]) -> Dict[str, Any]: | |
start_time = time.time() | |
self.context_manager.add_context('input', input_data, metadata={'source': 'user'}) | |
multimodal_features = self.multimodal.process_multimodal_input( | |
input_data.get('visual'), | |
input_data.get('text'), | |
input_data.get('audio') | |
) | |
if multimodal_features.numel() > 0: | |
self.knowledge_graph.add_knowledge( | |
'input_context', | |
{'features': multimodal_features.tolist()}, | |
datetime.now() | |
) | |
emotional_context = self.emotional.analyze_emotional_context({ | |
'text_features': input_data.get('text_features'), | |
'voice_features': input_data.get('voice_features') | |
}) | |
if input_data.get('problem'): | |
solution = self.collaborative.solve_collaboratively(input_data['problem']) | |
self.memory.add_memory({'type': 'solution', 'content': solution}, priority=0.9) | |
style = self.cognitive_style.get_current_style_parameters() | |
predictions = self.predictive.make_prediction('response', { | |
'input': input_data, | |
'features': multimodal_features, | |
'style': style | |
}) | |
uncertainty = self.uncertainty.quantify_uncertainty(predictions) | |
is_ethical, violations = self.ethical.validate_action({ | |
'type': 'generate_response', | |
'content': predictions | |
}) | |
response_content = predictions.get('content', "Thinking...") | |
if not is_ethical: | |
response_content = f'Ethical considerations prevent this response. Violations: {violations}' | |
if input_data.get("lang") and input_data.get("prompt"): | |
creative_output = self.creativity.generate_creative_content( | |
input_data["prompt"], input_data["lang"], creativity_level=0.8 | |
) | |
response_content += f" Creative output: {creative_output}" | |
if input_data.get("quantum_task"): | |
quantum_result = self.quantum.run_quantum_algorithm(input_data["quantum_task"], input_data.get("quantum_data", {})) | |
if quantum_result.get("status") == "success": | |
response_content += f" Quantum result: {quantum_result['result']}" | |
response = { | |
'content': response_content, | |
'emotional_state': emotional_context, | |
'uncertainty': uncertainty, | |
'style': style, | |
'timestamp': datetime.now() | |
} | |
self.memory.add_memory({'type': 'response', 'content': response}, priority=0.7) | |
end_time = time.time() | |
processing_time = end_time - start_time | |
self.resource_optimizer.optimize_resource_usage('processing_time', processing_time) | |
if input_data.get('feedback'): | |
self.adaptive_learning.process_feedback(input_data['feedback']) | |
self.neural_network.adapt_architecture(input_data['feedback']) | |
# Interacting with user feedback for continuous learning | |
if input_data.get('user_feedback'): | |
self.process_user_feedback(input_data['user_feedback'], multimodal_features) | |
return response | |
def process_user_feedback(self, feedback_text: str, multimodal_features: torch.Tensor): | |
# Use multimodal features along with feedback text for training | |
feedback_features = self.multimodal.process_multimodal_input(text_input=torch.tensor([feedback_text])) | |
combined_features = torch.cat((multimodal_features, feedback_features), dim=1) | |
# Train the response model with the combined features | |
self.train_response_model_with_feedback(combined_features) | |
def train_response_model_with_feedback(self, features: torch.Tensor): | |
self.response_model.train() | |
optimizer = torch.optim.Adam(self.response_model.parameters()) | |
criterion = nn.MSELoss() | |
# Feedback training loop | |
for _ in range(3): | |
optimizer.zero_grad() | |
outputs = self.response_model(features) | |
target = self.derive_target_from_feedback(features) | |
loss = criterion(outputs, target) | |
loss.backward() | |
optimizer.step() | |
def derive_target_from_feedback(self, features: torch.Tensor) -> torch.Tensor: | |
# Placeholder for deriving a target from feedback | |
return features * 0.9 | |
def shutdown(self): | |
print("Shutting down Enhanced Cognitive System...") | |
if hasattr(self.quantum, 'shutdown') and callable(self.quantum.shutdown): | |
self.quantum.shutdown() | |
def register_event_listeners(self): | |
self.context_manager.register_event_listener('context_added', self.on_context_added) | |
self.knowledge_graph.register_event_listener('knowledge_added', self.on_knowledge_added) | |
self.causal_engine.register_event_listener('relationship_added', self.on_relationship_added) | |
self.causal_engine.register_event_listener('relationship_removed', self.on_relationship_removed) | |
self.multimodal.register_event_listener('fusion_completed', self.on_fusion_completed) | |
self.adaptive_learning.register_event_listener('learning_rate_adjusted', self.on_learning_rate_adjusted) | |
self.emotional.register_event_listener('text_emotion_analyzed', self.on_emotion_analyzed) | |
self.collaborative.register_event_listener('consensus_reached', self.on_consensus_reached) | |
self.ethical.register_event_listener('principle_violated', self.on_principle_violated) | |
self.resource_optimizer. register_event_listener('resource_optimized', self.on_resource_optimized) | |
self.predictive.register_event_listener('prediction_made', self.on_prediction_made) | |
self.memory.register_event_listener('memory_added', self.on_memory_added) | |
self.memory.register_event_listener('memory_removed', self.on_memory_removed) | |
self.cognitive_style.register_event_listener('style_activated', self.on_style_activated) | |
self.uncertainty.register_event_listener('uncertainty_quantified', self.on_uncertainty_quantified) | |
self.goal_alignment.register_event_listener('goal_added', self.on_goal_added) | |
self.goal_alignment.register_event_listener('safety_constraint_added', self.on_safety_constraint_added) | |
self.creativity.register_event_listener('creative_content_generated', self.on_creative_content_generated) | |
self.quantum.register_event_listener('quantum_algorithm_executed', self.on_quantum_algorithm_executed) | |
self.neural_network.register_event_listener('layer_added', self.on_layer_added) | |
self.neural_network.register_event_listener('layer_removed', self.on_layer_removed) | |
self.real_world.register_event_listener('sensor_data_processed', self.on_sensor_data_processed) | |
self.real_world.register_event_listener('action_executed', self.on_action_executed) | |
self.architecture.register_event_listener('module_initialized', self.on_module_initialized) | |
self.architecture.register_event_listener('module_initialization_error', self.on_module_initialization_error) | |
# Event Handlers | |
def on_context_added(self, event_data: Dict[str, Any]): | |
print(f"Context added: {event_data['context_id']}") | |
def on_knowledge_added(self, event_data: Dict[str, Any]): | |
print(f"Knowledge added: {event_data['concept']}") | |
def on_relationship_added(self, event_data: Dict[str, Any]): | |
print(f"Causal relationship added between {event_data['cause']} and {event_data['effect']} with strength {event_data['strength']}") | |
def on_relationship_removed(self, event_data: Dict[str, Any]): | |
print(f"Causal relationship removed between {event_data['cause']} and {event_data['effect']}") | |
def on_fusion_completed(self, event_data: Dict[str, Any]): | |
print("Multimodal fusion completed.") | |
def on_learning_rate_adjusted(self, event_data: Dict[str, Any]): | |
print(f"Learning rate adjusted from {event_data['old_learning_rate']} to {event_data['new_learning_rate']}") | |
def on_emotion_analyzed(self, event_data: Dict[str, Any]): | |
print(f"Emotion analyzed: {event_data}") | |
def on_consensus_reached(self, event_data: Dict[str, Any]): | |
print(f"Consensus reached: {event_data['consensus_solution']}") | |
def on_principle_violated(self, event_data: Dict[str, Any]): | |
print(f"Ethical principle violated: {event_data['principle']} in action {event_data['action']}") | |
def on_resource_optimized(self, event_data: Dict[str, Any]): | |
print(f"Resource optimized: {event_data['type']} from {event_data['original_usage']} to {event_data['optimized_usage']}") | |
def on_prediction_made(self, event_data: Dict[str, Any]): | |
print(f"Prediction made by model {event_data['model']}: {event_data['prediction']}") | |
def on_memory_added(self, event_data: Dict[str, Any]): | |
print(f"Memory added: {event_data['type']} - {event_data['memory']}") | |
def on_memory_removed(self, event_data: Dict[str, Any]): | |
print(f"Memory removed: {event_data['type']} - {event_data['key']}") | |
def on_style_activated(self, event_data: Dict[str, Any]): | |
print(f"Cognitive style activated: {event_data['style_name']}") | |
def on_uncertainty_quantified(self, event_data: Dict[str, Any]): | |
print(f"Uncertainty quantified: {event_data['method']} - {event_data['result']}") | |
def on_goal_added(self, event_data: Dict[str, Any]): | |
print(f"Goal added: {event_data['goal_id']}") | |
def on_safety_constraint_added(self, event_data: Dict[str, Any]): | |
print(f"Safety constraint added: {event_data['constraint']} - {event_data['details']}") | |
def on_creative_content_generated(self, event_data: Dict[str, Any]): | |
print(f"Creative content generated for language {event_data['language']} with creativity level {event_data['creativity_level']}") | |
def on_quantum_algorithm_executed(self, event_data: Dict[str, Any]): | |
print(f"Quantum algorithm executed: {event_data['algorithm']} - Result: {event_data['result']}") | |
def on_layer_added(self, event_data: Dict[str, Any]): | |
print(f"Neural network layer added: {event_data['new_dim']}") | |
def on_layer_removed(self, event_data: Dict[str, Any]): | |
print("Neural network layer removed.") | |
def on_layer_expanded(self, event_data: Dict[str, Any]): | |
print(f"Neural network layer expanded to: {event_data['new_size']}") | |
def on_sensor_data_processed(self, event_data: Dict[str, Any]): | |
print(f"Sensor data processed: {event_data['sensor']} - Data: {event_data['data']}") | |
def on_action_executed(self, event_data: Dict[str, Any]): | |
print(f"Action executed on actuator {event_data['actuator']}: Success - {event_data['success']}") | |
def on_module_initialized(self, event_data: Dict[str, Any]): | |
print(f"Module initialized: {event_data['module_name']}") | |
def on_module_initialization_error(self, event_data: Dict[str, Any]): | |
print(f"Module initialization error: {event_data['module_name']} - Error: {event_data['error']}") | |
class ResponseModel(nn.Module): | |
def __init__(self, input_dim, hidden_dim, output_dim): | |
super(ResponseModel, self).__init__() | |
self.layer1 = nn.Linear(input_dim, hidden_dim) | |
self.relu = nn.ReLU() | |
self.layer2 = nn.Linear(hidden_dim, output_dim) | |
def forward(self, x): | |
x = self.layer1(x) | |
x = self.relu(x) | |
x = self.layer2(x) | |
return x | |
class ChatDataset(Dataset): | |
def __init__(self, prompts, responses, multimodal_module): | |
self.prompts = prompts | |
self.responses = responses | |
self.multimodal_module = multimodal_module | |
def __len__(self): | |
return len(self.prompts) | |
def __getitem__(self, idx): | |
prompt = self.prompts[idx] | |
response = self.responses[idx] | |
prompt_features = self.multimodal_module.process_multimodal_input(text_input=torch.tensor([prompt])) | |
response_features = self.multimodal_module.process_multimodal_input(text_input=torch.tensor([response])) | |
return {'input': prompt_features, 'target': response_features} | |
def sample_language_model(prompt): | |
generated_texts = [ | |
f"Evolving narrative for: {prompt}", | |
f"Dynamic story unfolding: {prompt}", | |
f"Adaptive tale inspired by: {prompt}", | |
f"Continuously developing story: {prompt}", | |
f"Ever-changing narrative: {prompt}" | |
] | |
return random.choice(generated_texts) | |
def sample_creativity_engine(base_content, creativity_level): | |
enhanced_content = [ | |
f"Imaginatively enhanced ({creativity_level}): {base_content}", | |
f"Creatively amplified ({creativity_level}): {base_content}", | |
f"Innovatively transformed ({creativity_level}): {base_content}", | |
f"Artistically reimagined ({creativity_level}): {base_content}", | |
f"Uniquely adapted ({creativity_level}): {base_content}" | |
] | |
return random.choice(enhanced_content) | |
class ModelInput(BaseModel): | |
prompt: str | |
max_new_tokens: int = 2048 | |
app = FastAPI() | |
# Define model paths | |
base_model_path = "HuggingFaceTB/SmolLM2-135M-Instruct" | |
adapter_path = "khurrameycon/SmolLM-135M-Instruct-qa_pairs_converted.json-25epochs" | |
try: | |
# Load the base model | |
print("Loading base model...") | |
model = AutoModelForCausalLM.from_pretrained( | |
base_model_path, | |
torch_dtype=torch.float16, | |
trust_remote_code=True, | |
device_map="auto" | |
) | |
# Load tokenizer | |
print("Loading tokenizer...") | |
tokenizer = AutoTokenizer.from_pretrained(base_model_path) | |
# Download adapter weights | |
print("Downloading adapter weights...") | |
adapter_path_local = snapshot_download(repo_id=adapter_path) | |
# Load the safetensors file | |
print("Loading adapter weights...") | |
adapter_file = f"{adapter_path_local}/adapter_model.safetensors" | |
state_dict = load_file(adapter_file) | |
# Load state dict into model | |
print("Applying adapter weights...") | |
model.load_state_dict(state_dict, strict=False) | |
print("Model and adapter loaded successfully!") | |
except Exception as e: | |
print(f"Error during model loading: {e}") | |
raise | |
def generate_response(model, tokenizer, instruction, max_new_tokens=2048): | |
"""Generate a response from the model based on an instruction.""" | |
try: | |
# Format input for the model | |
inputs = tokenizer.encode(instruction, return_tensors="pt").to(model.device) | |
# Generate response | |
outputs = model.generate( | |
inputs, | |
max_new_tokens=max_new_tokens, | |
temperature=0.7, | |
top_p=0.9, | |
do_sample=True, | |
) | |
# Decode and return the output | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
except Exception as e: | |
raise ValueError(f"Error generating response: {e}") | |
async def generate_text(input: ModelInput): | |
try: | |
response = generate_response( | |
model=model, | |
tokenizer=tokenizer, | |
instruction=input.prompt, | |
max_new_tokens=input.max_new_tokens | |
) | |
return {"generated_text": response} | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |
async def root(): | |
return {"message": "Welcome to the Model API!"} | |
def main(): | |
system = EnhancedCognitiveSystem() | |
system.cognitive_style.register_style(ThinkingStyle.ANALYTICAL.value, {"logic": 0.9, "creativity": 0.2}) | |
system.cognitive_style.register_style(ThinkingStyle.CREATIVE.value, {"logic": 0.3, "creativity": 0.9}) | |
system.cognitive_style.register_style(ThinkingStyle.CRITICAL.value, {"logic": 0.8, "analysis": 0.9}) | |
system.cognitive_style.register_style(ThinkingStyle.SYSTEMATIC.value, {"organization": 0.9, "detail": 0.8}) | |
system.cognitive_style.register_style(ThinkingStyle.LATERAL.value, {"innovation": 0.9, "flexibility": 0.8}) | |
system.cognitive_style.register_style(ThinkingStyle.INTUITIVE.value, {"instinct": 0.9, "emotion": 0.7}) | |
system.cognitive_style.register_style(ThinkingStyle.COLLABORATIVE.value, {"teamwork": 0.9, "communication": 0.8}) | |
system.cognitive_style.register_style(ThinkingStyle.ETHICAL.value, {"morality": 0.9, "principles": 0.9}) | |
system.cognitive_style.register_style(ThinkingStyle.PRAGMATIC.value, {"practicality": 0.9, "efficiency": 0.8}) | |
system.cognitive_style.register_style(ThinkingStyle.INNOVATIVE.value, {"originality": 0.9, "invention": 0.8}) | |
system.cognitive_style.register_style(ThinkingStyle.REFLECTIVE.value, {"introspection": 0.9, "thoughtfulness": 0.8}) | |
system.cognitive_style.register_style(ThinkingStyle.EXPLORATORY.value, {"curiosity": 0.9, "discovery": 0.8}) | |
system.cognitive_style.register_style(ThinkingStyle.STRATEGIC.value, {"planning": 0.9, "foresight": 0.8}) | |
system.cognitive_style.register_style(ThinkingStyle.ABSTRACT.value, {"conceptualization": 0.9, "theory": 0.8}) | |
system.cognitive_style.register_style(ThinkingStyle.CONCRETE.value, {"tangibility": 0.9, "reality": 0.8}) | |
system.cognitive_style.register_style(ThinkingStyle.EMPATHETIC.value, {"understanding": 0.9, "compassion": 0.8}) | |
system.cognitive_style.register_style(ThinkingStyle.HOLISTIC.value, {"integration": 0.9, "synthesis": 0.8}) | |
system.cognitive_style.register_style(ThinkingStyle.DIVERGENT.value, {"breadth": 0.9, "exploration": 0.8}) | |
system.cognitive_style.register_style(ThinkingStyle.CONVERGENT.value, {"focus": 0.9, "solution-oriented": 0.8}) | |
system.cognitive_style.register_style(ThinkingStyle.ADAPTIVE.value, {"flexibility": 0.9, "responsiveness": 0.8}) | |
system.cognitive_style.activate_style(ThinkingStyle.ANALYTICAL.value) | |
system.ethical.add_principle("non_maleficence", lambda x: "harm" not in x.get("content", "").lower()) | |
system.ethical.add_principle("beneficence", lambda x: "help" in x.get("content", "").lower()) | |
system.ethical.add_principle("user_autonomy", lambda x: x.get("user_approved", True)) | |
system.ethical.add_principle("avoid_deception", lambda x: not x.get("deceptive", False)) | |
system.ethical.add_principle("ensure_privacy", lambda x: not x.get("privacy_risk", False)) | |
system.ethical.add_principle("promote_fairness", lambda x: not x.get("unfair", False)) | |
system.goal_alignment.add_goal({"objective": "solve problems", "priority": 0.8, "user_approved": True}) | |
system.goal_alignment.add_goal({"objective": "learn and adapt", "priority": 0.9, "user_approved": True}) | |
system.goal_alignment.add_goal({"objective": "assist users", "priority": 0.85, "user_approved": True}) | |
system.goal_alignment.add_goal({"objective": "ensure safety", "priority": 0.95, "user_approved": True}) | |
system.goal_alignment.add_goal({"objective": "promote well-being", "priority": 0.8, "user_approved": True}) | |
system.goal_alignment.add_goal({"objective": "foster creativity", "priority": 0.7, "user_approved": True}) | |
system.goal_alignment.add_goal({"objective": "advance knowledge", "priority": 0.75, "user_approved": True}) | |
system.goal_alignment.add_goal({"objective": "improve efficiency", "priority": 0.6, "user_approved": True}) | |
system.creativity.add_language_model("english", sample_language_model) | |
system.creativity.add_creativity_engine("english", sample_creativity_engine) | |
system.quantum.initialize_quantum_circuit(num_qubits=8) | |
system.quantum.add_gate("Hadamard", [0, 1, 2, 3, 4, 5, 6, 7]) | |
system.quantum.add_gate("CNOT", [0, 1]) | |
system.quantum.add_gate("CNOT", [2, 3]) | |
system.quantum.add_gate("CNOT", [4, 5]) | |
system.quantum.add_gate("CNOT", [6, 7]) | |
input_data = { | |
'text': 'What is the meaning of life?', | |
'text_features': torch.randn(1, 1024), | |
'visual': torch.randn(1, 3, 64, 64), | |
'audio': torch.randn(1, 128), | |
'problem': {'type': 'optimization', 'parameters': [1, 2, 3]}, | |
'feedback': {'loss': 0.4, 'accuracy': 0.9}, | |
'lang': 'english', | |
'prompt': 'Tell me a story', | |
'quantum_task': "Shor's", | |
'quantum_data': {"number": 15}, | |
'user_feedback': "That was helpful, thanks!" | |
} | |
response = system.process_input(input_data) | |
print(f"Response: {response}") | |
input_data_2 = {'text': 'How are you feeling?', 'user_feedback': "I have some feedback for you."} | |
response_2 = system.process_input(input_data_2) | |
print(f"Response 2: {response_2}") | |
system.shutdown() | |
if __name__ == "__main__": | |
main() |