File size: 107,445 Bytes
f1b01ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e0397b
f1b01ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e0397b
f1b01ca
 
 
 
 
6e0397b
f1b01ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e0397b
f1b01ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e0397b
f1b01ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e0397b
f1b01ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e0397b
f1b01ca
 
d189069
f1b01ca
 
6e0397b
f1b01ca
 
6e0397b
f1b01ca
 
6e0397b
f1b01ca
 
6e0397b
f1b01ca
 
 
 
 
 
6e0397b
f1b01ca
 
 
 
 
6e0397b
f1b01ca
 
 
 
 
6e0397b
f1b01ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e0397b
 
 
498ae97
6e0397b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
498ae97
6e0397b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1b01ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
from huggingface_hub import snapshot_download
from safetensors.torch import load_file
import numpy as np
import torch.nn as nn
import networkx as nx
from dataclasses import dataclass
from typing import List, Dict, Any, Tuple, Optional, Set, Protocol, Union
from collections import defaultdict
import heapq
from abc import ABC, abstractmethod
from enum import Enum
import concurrent.futures
from concurrent.futures import ThreadPoolExecutor
import time
from datetime import datetime
import random
import pandas as pd
from torch.utils.data import Dataset, DataLoader, TensorDataset
from sklearn.model_selection import train_test_split
from tqdm import tqdm
import os
from sklearn.preprocessing import MinMaxScaler

# --- Enhanced Constants ---
MAX_SHORT_TERM_MEMORY = 10000  # Increased capacity
MAX_LONG_TERM_MEMORY = 100000  # Increased capacity
UNCERTAINTY_QUANTIFICATION_METHODS = ['bayesian', 'ensemble', 'confidence_scores', 'gaussian_processes']
QUANTUM_ALGORITHMS = ["Shor's", "Grover's", "QAOA", "VQE", "HHL"]
NETWORK_ADAPTATION_THRESHOLD = 0.5  # Adjusted threshold
REAL_WORLD_INTERACTION_TYPES = ['sensor_read', 'actuator_execute', 'data_stream', 'feedback_loop']
CONTEXT_SIMILARITY_THRESHOLD = 0.4  # Lower threshold for broader context
CONTEXT_DECAY_RATE = 0.0005  # Slower decay
MAX_CONTEXT_SIZE = 10000  # Increased context size
KNOWLEDGE_RELATIONSHIP_DECAY_RATE = 0.0005  # Slower decay
MAX_KNOWLEDGE_NODES = 50000  # Increased node capacity
CAUSAL_INFERENCE_THRESHOLD = 0.5  # Adjusted threshold
CAUSAL_DECAY_RATE = 0.0005  # Slower decay
MAX_CAUSAL_ENTRIES = 10000  # Increased entry capacity
MAX_DOMAIN_MODELS = 200  # Increased model capacity
MAX_TRANSFER_MAPPINGS = 500  # Increased mapping capacity
ADAPTIVE_LEARNING_INITIAL_LR = 0.2  # Higher initial learning rate
ADAPTIVE_LEARNING_MIN_LR = 0.0000001  # Lower minimum learning rate
ADAPTIVE_LEARNING_MAX_LR = 1.0  # Increased max learning rate
EMOTION_CATEGORIES = ['anger', 'fear', 'joy', 'love', 'sadness', 'surprise', 'neutral', 'anticipation', 'trust', 'disgust', 'contentment', 'boredom', 'curiosity', 'awe']  # Expanded emotion categories
COLLABORATIVE_CONSENSUS_THRESHOLD = 0.7  # Adjusted threshold
MAX_COLLABORATIVE_AGENTS = 100  # Increased agent capacity
SOLUTION_HISTORY_SIZE = 1000  # Increased history size
MAX_ETHICAL_VIOLATIONS_HISTORY = 2000  # Increased history capacity
MAX_RESOURCE_HISTORY = 5000  # Increased history size
MAX_PREDICTIVE_MODELS = 100  # Increased model capacity
MAX_PREDICTION_HISTORY = 10000  # Increased history capacity
SHORT_TERM_MEMORY_CAPACITY = 1000  # Increased capacity
MEMORY_CONSOLIDATION_THRESHOLD = 1.5  # Lower threshold for faster consolidation
LONG_TERM_MEMORY_CAPACITY = 10000  # Increased capacity
MAX_COGNITIVE_STYLE_HISTORY = 500  # Increased history size
GOAL_ALIGNMENT_THRESHOLD = 0.5  # Adjusted threshold
MAX_GOALS = 500  # Increased goal capacity
MAX_SAFETY_CONSTRAINTS = 500  # Increased constraint capacity
MAX_LANGUAGES = 100  # Increased language capacity
QUANTUM_MAX_RESULTS_HISTORY = 1000  # Increased history size
ADAPTIVE_NEURAL_NETWORK_MAX_LAYERS = 30  # Increased layer capacity
ADAPTIVE_NEURAL_NETWORK_MAX_LAYER_SIZE = 32768  # Increased layer size
MAX_INTERACTION_HISTORY = 5000  # Increased history capacity
RESPONSE_MODEL_HIDDEN_DIM = 8192 # Increased response model hidden dimensions
RESPONSE_MODEL_OUTPUT_DIM = 4096 # Increased response model output dimensions
TRAINING_BATCH_SIZE = 128 # Increased training batch size
TRAINING_EPOCHS = 20 # Increased training epochs
TRAINING_LEARNING_RATE = 0.0001 # Changed learning rate for better convergence
TEXT_EMBEDDING_DIM = 768  # Standard dimension for text embeddings
VISUAL_EMBEDDING_DIM = 2048  # Dimension for visual embeddings
AUDIO_EMBEDDING_DIM = 512 # Dimension for audio embeddings

# --- Enhanced Thinking Styles ---
class ThinkingStyle(Enum):
    ANALYTICAL = "analytical"
    CREATIVE = "creative"
    CRITICAL = "critical"
    SYSTEMATIC = "systematic"
    LATERAL = "lateral"
    INTUITIVE = "intuitive"
    COLLABORATIVE = "collaborative"
    ETHICAL = "ethical"
    PRAGMATIC = "pragmatic"
    INNOVATIVE = "innovative"
    REFLECTIVE = "reflective"
    EXPLORATORY = "exploratory"
    STRATEGIC = "strategic"
    ABSTRACT = "abstract"
    CONCRETE = "concrete"
    EMPATHETIC = "empathetic"
    HOLISTIC = "holistic"
    DIVERGENT = "divergent"
    CONVERGENT = "convergent"
    ADAPTIVE = "adaptive"

# --- Enhanced Generalized Context Manager ---
class GeneralizedContextManager:
    def __init__(self, similarity_threshold=CONTEXT_SIMILARITY_THRESHOLD, context_decay_rate=CONTEXT_DECAY_RATE, max_context_size=MAX_CONTEXT_SIZE):
        self.context_graph = nx.DiGraph()
        self.temporal_window = []
        self.context_cache = {}
        self.similarity_threshold = similarity_threshold
        self.context_decay_rate = context_decay_rate
        self.max_context_size = max_context_size
        self.event_listeners = defaultdict(list)

    def add_context(self, context_id: str, context_data: Dict[str, Any],
                    timestamp: Optional[datetime] = None, metadata: Optional[Dict[str, Any]] = None):
        if timestamp is None:
            timestamp = datetime.now()

        if context_id not in self.context_graph:
            self.context_graph.add_node(context_id,
                                      data=context_data,
                                      timestamp=timestamp,
                                      metadata=metadata or {})
        else:
            self.context_graph.nodes[context_id]['data'].update(context_data)
            self.context_graph.nodes[context_id]['timestamp'] = timestamp
            if metadata:
                self.context_graph.nodes[context_id]['metadata'].update(metadata)

        self.temporal_window.append((timestamp, context_id))
        self.temporal_window.sort()

        self._update_relationships(context_id)
        self._manage_context_size()
        self._decay_context()
        self._trigger_event(context_id, 'context_added')

    def _calculate_similarity(self, data1: Dict[str, Any], data2: Dict[str, Any]) -> float:
        keys1 = set(data1.keys())
        keys2 = set(data2.keys())
        common_keys = keys1.intersection(keys2)

        if not common_keys:
            return 0.0

        similarity_sum = 0.0
        for key in common_keys:
            value1 = data1[key]
            value2 = data2[key]

            if isinstance(value1, (int, float)) and isinstance(value2, (int, float)):
                similarity_sum += 1.0 / (1.0 + abs(value1 - value2))
            elif isinstance(value1, str) and isinstance(value2, str):
                similarity_sum += float(value1 == value2)
            elif isinstance(value1, (list, tuple, np.ndarray)) and isinstance(value2, (list, tuple, np.ndarray)):
                if isinstance(value1, np.ndarray):
                    value1 = value1.flatten()
                if isinstance(value2, np.ndarray):
                    value2 = value2.flatten()
                if value1.size > 0 and value2.size > 0:
                    dot_product = np.dot(value1, value2)
                    magnitude1 = np.linalg.norm(value1)
                    magnitude2 = np.linalg.norm(value2)
                    if magnitude1 != 0 and magnitude2 != 0:
                        similarity_sum += dot_product / (magnitude1 * magnitude2)
            elif type(value1) == type(value2):
                similarity_sum += float(value1 == value2)
        return similarity_sum / len(common_keys) if len(common_keys) > 0 else 0.0

    def _update_relationships(self, context_id: str):
        context_data = self.context_graph.nodes[context_id]['data']
        for existing_id in self.context_graph.nodes():
            if existing_id != context_id:
                similarity = self._calculate_similarity(
                    context_data,
                    self.context_graph.nodes[existing_id]['data']
                )
                if similarity > self.similarity_threshold:
                    if not self.context_graph.has_edge(context_id, existing_id):
                        self.context_graph.add_edge(context_id, existing_id, weight=similarity)
                    else:
                        self.context_graph[context_id][existing_id]['weight'] = similarity
                elif self.context_graph.has_edge(context_id, existing_id):
                    self.context_graph.remove_edge(context_id, existing_id)

    def _decay_context(self):
        now = datetime.now()
        self.temporal_window = [(t, c_id) for t, c_id in self.temporal_window if (now - t).total_seconds() < 86400 * 30]  # Increased window to 30 days

        nodes_to_remove = []
        for node, data in self.context_graph.nodes(data=True):
            time_diff = (now - data['timestamp']).total_seconds()
            data['weight'] = data.get('weight', 1.0) * (1 - self.context_decay_rate * time_diff)
            if data['weight'] < 0.00001:  # More aggressive decay
                nodes_to_remove.append(node)

        for node in nodes_to_remove:
            self.context_graph.remove_node(node)
            self._trigger_event(node, 'context_removed')

    def _manage_context_size(self):
        if len(self.context_graph) > self.max_context_size:
            # Remove least recently used or lowest weighted nodes
            sorted_nodes = sorted(self.context_graph.nodes(data=True),
                                  key=lambda x: (x[1]['timestamp'], x[1].get('weight', 1.0)))
            nodes_to_remove = sorted_nodes[:len(self.context_graph) - self.max_context_size]
            for node, _ in nodes_to_remove:
                self.context_graph.remove_node(node)
                self._trigger_event(node, 'context_removed')

    def retrieve_related_context(self, context_id: str, depth: int = 4, min_similarity: float = 0.1) -> Dict[str, Any]:
        related_context = {}
        try:
            neighbors = nx.ego_graph(self.context_graph, context_id, radius=depth)
            for neighbor in neighbors:
                edge_data = self.context_graph.get_edge_data(context_id, neighbor)
                if edge_data is None or edge_data['weight'] >= min_similarity:
                    related_context[neighbor] = self.context_graph.nodes[neighbor]['data']
        except nx.NodeNotFound:
            pass
        return related_context

    def register_event_listener(self, event_type: str, listener: callable):
        self.event_listeners[event_type].append(listener)

    def _trigger_event(self, context_id: str, event_type: str):
        if event_type in self.event_listeners:
            for listener in self.event_listeners[event_type]:
                listener(context_id, event_type, self.context_graph.nodes[context_id])

# --- Enhanced Dynamic Knowledge Graph ---
class DynamicKnowledgeGraph:
    def __init__(self, relationship_decay_rate=KNOWLEDGE_RELATIONSHIP_DECAY_RATE, max_nodes=MAX_KNOWLEDGE_NODES):
        self.knowledge_graph = nx.DiGraph()
        self.temporal_index = defaultdict(list)
        self.relationship_decay_rate = relationship_decay_rate
        self.max_nodes = max_nodes
        self.event_listeners = defaultdict(list)

    def add_knowledge(self, concept: str, properties: Dict[str, Any],
                     timestamp: Optional[datetime]=None, relationships: Optional[Dict[str, float]] = None):
        if timestamp is None:
            timestamp = datetime.now()

        if concept not in self.knowledge_graph:
            self.knowledge_graph.add_node(concept, **properties, timestamp=timestamp)
            self._trigger_event(concept, 'knowledge_added')
        else:
            for key, value in properties.items():
                self.knowledge_graph.nodes[concept][key] = value
            self.knowledge_graph.nodes[concept]['timestamp'] = timestamp
            self._trigger_event(concept, 'knowledge_updated')

        self.temporal_index[timestamp].append(concept)

        if relationships:
            for related_concept, strength in relationships.items():
                self.add_relationship(concept, related_concept, strength)

        self._manage_graph_size()

    def add_relationship(self, concept1: str, concept2: str, strength: float):
        if self.knowledge_graph.has_edge(concept1, concept2):
            self.knowledge_graph[concept1][concept2]['strength'] = strength
        else:
            self.knowledge_graph.add_edge(concept1, concept2, strength=strength)
        self._trigger_event(concept1, 'relationship_added', {'to': concept2, 'strength': strength})

    def query_temporal_slice(self, start_time: datetime,
                           end_time: datetime) -> Set[str]:
        relevant_concepts = set()
        for time, concepts in self.temporal_index.items():
            if start_time <= time <= end_time:
                relevant_concepts.update(concepts)
        return relevant_concepts

    def get_related_concepts(self, concept: str, threshold: float = 0.2, depth: int = 4) -> Dict[str, Dict[str, Any]]:
        related_concepts = {}
        try:
            # Use ego_graph to explore relationships up to the specified depth
            subgraph = nx.ego_graph(self.knowledge_graph, concept, radius=depth)
            for neighbor in subgraph.nodes:
                if neighbor != concept:
                    edge_data = subgraph.get_edge_data(concept, neighbor)
                    # Consider adding a concept if it's directly connected or if it's reachable within the depth
                    if (edge_data and edge_data['strength'] >= threshold) or neighbor in subgraph:
                        related_concepts[neighbor] = self.knowledge_graph.nodes[neighbor]
        except nx.NodeNotFound:
            pass
        return related_concepts

    def decay_relationships(self):
        now = datetime.now()
        for u, v, data in self.knowledge_graph.edges(data=True):
            time_diff = (now - self.knowledge_graph.nodes[u]['timestamp']).total_seconds()
            data['strength'] *= (1 - self.relationship_decay_rate * time_diff)
            if data['strength'] < 0.0001:
              self.knowledge_graph.remove_edge(u,v)
              self._trigger_event(u, 'relationship_removed', {'to': v})

    def _manage_graph_size(self):
        if len(self.knowledge_graph) > self.max_nodes:
            # Remove nodes with the lowest degree (least connected)
            degrees = dict(self.knowledge_graph.degree())
            sorted_nodes = sorted(degrees.items(), key=lambda item: item[1])
            nodes_to_remove = [node for node, degree in sorted_nodes[:len(self.knowledge_graph) - self.max_nodes]]
            for node in nodes_to_remove:
                self.knowledge_graph.remove_node(node)
                self._trigger_event(node, 'knowledge_removed')
                # Remove the node from temporal index as well
                for time, concepts in self.temporal_index.items():
                    if node in concepts:
                        concepts.remove(node)

    def register_event_listener(self, event_type: str, listener: callable):
        self.event_listeners[event_type].append(listener)

    def _trigger_event(self, concept: str, event_type: str, additional_data: Optional[Dict[str, Any]] = None):
        if event_type in self.event_listeners:
            for listener in self.event_listeners[event_type]:
                event_data = {
                    'concept': concept,
                    'event_type': event_type,
                    'timestamp': datetime.now(),
                    'additional_data': additional_data or {}
                }
                listener(event_data)

# --- Enhanced Causal Engine ---
class CausalEngine:
    def __init__(self, inference_threshold=CAUSAL_INFERENCE_THRESHOLD, decay_rate=CAUSAL_DECAY_RATE, max_entries=MAX_CAUSAL_ENTRIES):
        self.causal_graph = nx.DiGraph()
        self.inference_cache = {}
        self.inference_threshold = inference_threshold
        self.decay_rate = decay_rate
        self.max_entries = max_entries
        self.evidence_history = []
        self.event_listeners = defaultdict(list)

    def add_causal_relationship(self, cause: str, effect: str,
                              strength: float, evidence: List[Dict], timestamp: Optional[datetime] = None):
        if timestamp is None:
            timestamp = datetime.now()
        if self.causal_graph.has_edge(cause, effect):
            self.causal_graph[cause][effect]['strength'] = strength
            self.causal_graph[cause][effect]['evidence'].extend(evidence)
            self.causal_graph[cause][effect]['timestamp'] = timestamp
        else:
            self.causal_graph.add_edge(cause, effect,
                                     strength=strength,
                                     evidence=evidence,
                                     timestamp=timestamp)
        self.inference_cache.clear()
        self._trigger_event('relationship_added', {'cause': cause, 'effect': effect, 'strength': strength})

        # Store evidence in history for later analysis or auditing
        self.evidence_history.append({
            'cause': cause,
            'effect': effect,
            'strength': strength,
            'evidence': evidence,
            'timestamp': timestamp
        })
        self._manage_evidence_history()

    def infer_causes(self, effect: str, min_strength: Optional[float] = None, depth: int = 4) -> List[Tuple[str, float]]:
        min_strength = min_strength if min_strength is not None else self.inference_threshold

        # Check if the result is already in the cache
        if effect in self.inference_cache:
            return self.inference_cache[effect]

        causes = []
        # Use breadth-first search to explore causes up to the specified depth
        queue = [(effect, 1.0, 0)]  # (node, cumulative_strength, current_depth)
        visited = {effect}

        while queue:
            current_node, cumulative_strength, current_depth = queue.pop(0)
            if current_depth < depth:
                for predecessor in self.causal_graph.predecessors(current_node):
                    edge_data = self.causal_graph.get_edge_data(predecessor, current_node)
                    new_strength = cumulative_strength * edge_data['strength']
                    if new_strength >= min_strength:
                        causes.append((predecessor, new_strength))
                        if predecessor not in visited:
                            visited.add(predecessor)
                            queue.append((predecessor, new_strength, current_depth + 1))

        causes.sort(key=lambda x: x[1], reverse=True)

        # Cache the result for future use
        self.inference_cache[effect] = causes
        return causes

    def decay_causal_strengths(self):
        now = datetime.now()
        edges_to_remove = []
        for u, v, data in self.causal_graph.edges(data=True):
            time_diff = (now - data['timestamp']).total_seconds() if 'timestamp' in data else 0
            data['strength'] = max(0, data['strength'] - self.decay_rate * time_diff)
            if data['strength'] == 0:
              edges_to_remove.append((u,v))

        for u, v in edges_to_remove:
          self.causal_graph.remove_edge(u,v)
          self._trigger_event('relationship_removed', {'cause': u, 'effect': v})

    def get_top_causes(self, effect: str, top_n: int = 10) -> List[Tuple[str, float]]:
        causes = self.infer_causes(effect)
        return causes[:top_n]

    def update_causal_strength(self, cause: str, effect: str, new_strength: float, new_evidence: Optional[List[Dict]] = None):
        if self.causal_graph.has_edge(cause, effect):
            self.causal_graph[cause][effect]['strength'] = new_strength
            if new_evidence:
                self.causal_graph[cause][effect]['evidence'].extend(new_evidence)
                self.evidence_history.append({
                    'cause': cause,
                    'effect': effect,
                    'strength': new_strength,
                    'evidence': new_evidence,
                    'timestamp': datetime.now()
                })
            self.inference_cache.clear()  # Invalidate cache
            self._trigger_event('relationship_updated', {'cause': cause, 'effect': effect, 'strength': new_strength})
        else:
            raise ValueError(f"No causal link between {cause} and {effect}")

    def _manage_evidence_history(self):
        # Keep the evidence history within the specified size limit
        if len(self.evidence_history) > self.max_entries:
            self.evidence_history = self.evidence_history[-self.max_entries:]

    def register_event_listener(self, event_type: str, listener: callable):
        self.event_listeners[event_type].append(listener)

    def _trigger_event(self, event_type: str, event_data: Dict[str, Any]):
        if event_type in self.event_listeners:
            event_data['timestamp'] = datetime.now()
            for listener in self.event_listeners[event_type]:
                listener(event_data)

# --- Enhanced Cross Domain Mastery ---
class CrossDomainMastery:
    def __init__(self, max_models=MAX_DOMAIN_MODELS, max_mappings=MAX_TRANSFER_MAPPINGS):
        self.domain_models = {}
        self.transfer_mappings = {}
        self.domain_experts = {}
        self.max_models = max_models
        self.max_mappings = max_mappings
        self.usage_timestamps = {}
        self.event_listeners = defaultdict(list)

    def add_domain_model(self, domain: str, model: Any):
        if len(self.domain_models) >= self.max_models:
            self._remove_least_used_model()
        self.domain_models[domain] = model
        self.usage_timestamps[domain] = datetime.now()
        self._trigger_event('model_added', {'domain': domain})

    def create_transfer_mapping(self, source_domain: str,
                              target_domain: str,
                              mapping_function: callable):
        if len(self.transfer_mappings) >= self.max_mappings:
            self._remove_least_used_mapping()
        self.transfer_mappings[(source_domain, target_domain)] = mapping_function
        self.usage_timestamps[(source_domain, target_domain)] = datetime.now()
        self._trigger_event('mapping_created', {'source': source_domain, 'target': target_domain})

    def transfer_knowledge(self, source_domain: str,
                          target_domain: str,
                          knowledge: Any) -> Any:
        if (source_domain, target_domain) in self.transfer_mappings:
            mapping = self.transfer_mappings[(source_domain, target_domain)]
            self.usage_timestamps[(source_domain, target_domain)] = datetime.now()
            try:
                transferred_knowledge = mapping(knowledge)
                self._trigger_event('knowledge_transferred', {'source': source_domain, 'target': target_domain})
                return transferred_knowledge
            except Exception as e:
                print(f"Error during knowledge transfer: {e}")
                self._trigger_event('transfer_error', {'source': source_domain, 'target': target_domain, 'error': str(e)})
                return None
        return None

    def register_domain_expert(self, domain: str, expert_function: callable):
        self.domain_experts[domain] = expert_function
        self._trigger_event('expert_registered', {'domain': domain})

    def consult_domain_expert(self, domain: str, query: Any) -> Any:
        if domain in self.domain_experts:
            expert = self.domain_experts[domain]
            self.usage_timestamps[domain] = datetime.now()
            try:
                response = expert(query)
                self._trigger_event('expert_consulted', {'domain': domain})
                return response
            except Exception as e:
                print(f"Error consulting domain expert: {e}")
                self._trigger_event('expert_error', {'domain': domain, 'error': str(e)})
                return None
        return None

    def _remove_least_used_model(self):
        lru_model = min(self.usage_timestamps, key=self.usage_timestamps.get)
        if lru_model in self.domain_models:
          del self.domain_models[lru_model]
          del self.usage_timestamps[lru_model]
          self._trigger_event('model_removed', {'domain': lru_model})

    def _remove_least_used_mapping(self):
        lru_mapping = min(self.usage_timestamps, key=lambda k: self.usage_timestamps[k] if isinstance(k, tuple) else float('inf'))
        if isinstance(lru_mapping, tuple) and lru_mapping in self.transfer_mappings:
          del self.transfer_mappings[lru_mapping]
          del self.usage_timestamps[lru_mapping]
          self._trigger_event('mapping_removed', {'source': lru_mapping[0], 'target': lru_mapping[1]})

    def register_event_listener(self, event_type: str, listener: callable):
        self.event_listeners[event_type].append(listener)

    def _trigger_event(self, event_type: str, event_data: Dict[str, Any]):
        if event_type in self.event_listeners:
            event_data['timestamp'] = datetime.now()
            for listener in self.event_listeners[event_type]:
                listener(event_data)

# --- Enhanced Intuitive Multimodal Understanding ---
class IntuitiveMultimodalUnderstanding:
    def __init__(self, visual_dim: int = VISUAL_EMBEDDING_DIM, text_dim: int = TEXT_EMBEDDING_DIM, audio_dim: int = AUDIO_EMBEDDING_DIM, fusion_dim: int = 2048, num_heads: int = 32):
        self.visual_encoder = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2),
            nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2),
            nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2),
            nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2),
            nn.Flatten(),
            nn.Linear(visual_dim * visual_dim // 1024 * 512, fusion_dim),
            nn.LayerNorm(fusion_dim)
        )

        self.text_encoder = nn.Sequential(
            nn.Linear(text_dim, 2048),
            nn.ReLU(),
            nn.Linear(2048, fusion_dim),
            nn.LayerNorm(fusion_dim)
        )

        self.audio_encoder = nn.Sequential(
            nn.Linear(audio_dim, 1024),
            nn.ReLU(),
            nn.Linear(1024, fusion_dim),
            nn.LayerNorm(fusion_dim)
        )

        self.multimodal_fusion = nn.Sequential(
            nn.Linear(fusion_dim * 3, fusion_dim * 2),
            nn.ReLU(),
            nn.Linear(fusion_dim * 2, fusion_dim),
            nn.LayerNorm(fusion_dim)
        )
        self.fusion_dim = fusion_dim
        self.attention = nn.MultiheadAttention(fusion_dim, num_heads)
        self.event_listeners = defaultdict(list)

    def process_multimodal_input(self,
                               visual_input: Optional[torch.Tensor] = None,
                               text_input: Optional[torch.Tensor] = None,
                               audio_input: Optional[torch.Tensor] = None) -> torch.Tensor:
        encoded_inputs = []

        if visual_input is not None:
            visual_features = self.visual_encoder(visual_input)
            encoded_inputs.append(visual_features)
            self._trigger_event('visual_processed')

        if text_input is not None:
            text_features = self.text_encoder(text_input)
            encoded_inputs.append(text_features)
            self._trigger_event('text_processed')

        if audio_input is not None:
            audio_features = self.audio_encoder(audio_input)
            encoded_inputs.append(audio_features)
            self._trigger_event('audio_processed')

        if encoded_inputs:
            concatenated_inputs = torch.cat(encoded_inputs, dim=1)
            if concatenated_inputs.shape[1] != self.fusion_dim * 3:
                concatenated_inputs = concatenated_inputs.view(-1, self.fusion_dim * 3)
            fused_output = self.multimodal_fusion(concatenated_inputs)

            # Apply attention mechanism
            attn_output, attn_output_weights = self.attention(fused_output.unsqueeze(0), fused_output.unsqueeze(0), fused_output.unsqueeze(0))
            self._trigger_event('fusion_completed')

            return attn_output.squeeze(0)
        return torch.tensor([])

    def register_event_listener(self, event_type: str, listener: callable):
        self.event_listeners[event_type].append(listener)

    def _trigger_event(self, event_type: str):
        if event_type in self.event_listeners:
            for listener in self.event_listeners[event_type]:
                listener({'event_type': event_type, 'timestamp': datetime.now()})

# --- Enhanced Adaptive Learning ---
class AdaptiveLearning:
    def __init__(self, initial_learning_rate=ADAPTIVE_LEARNING_INITIAL_LR, adaptation_threshold=NETWORK_ADAPTATION_THRESHOLD, min_learning_rate=ADAPTIVE_LEARNING_MIN_LR, max_learning_rate=ADAPTIVE_LEARNING_MAX_LR, learning_rate_decay=0.8, learning_rate_growth=1.3):
        self.feedback_history = []
        self.learning_rate = initial_learning_rate
        self.adaptation_threshold = adaptation_threshold
        self.min_learning_rate = min_learning_rate
        self.max_learning_rate = max_learning_rate
        self.learning_rate_decay = learning_rate_decay
        self.learning_rate_growth = learning_rate_growth
        self.adjustment_history = []
        self.event_listeners = defaultdict(list)

    def process_feedback(self, feedback: Dict[str, Any], timestamp: Optional[datetime]=None):
        if timestamp is None:
            timestamp = datetime.now()
        self.feedback_history.append((feedback, timestamp))
        self._update_learning_parameters(feedback)
        self._trigger_event('feedback_processed', {'performance': feedback.get('performance', 0.0)})

    def _update_learning_parameters(self, feedback: Dict[str, Any]):
        performance = feedback.get('performance', 0.0)
        adjustment_factor = self.learning_rate_growth if performance < self.adaptation_threshold else self.learning_rate_decay
        new_learning_rate = self.learning_rate * adjustment_factor
        new_learning_rate = max(min(new_learning_rate, self.max_learning_rate), self.min_learning_rate)

        # Record adjustment with details
        adjustment_details = {
            'timestamp': datetime.now(),
            'old_learning_rate': self.learning_rate,
            'new_learning_rate': new_learning_rate,
            'performance': performance,
            'adjustment_factor': adjustment_factor
        }
        self.adjustment_history.append(adjustment_details)
        self._trigger_event('learning_rate_adjusted', adjustment_details)

        self.learning_rate = new_learning_rate

    def get_learning_rate(self) -> float:
        return self.learning_rate

    def get_recent_feedback(self, time_window: int = 480) -> List[Dict[str, Any]]:
        now = datetime.now()
        recent_feedback = [f for f, t in self.feedback_history if (now - t).total_seconds() <= time_window]
        return recent_feedback

    def get_adjustment_history(self, last_n: Optional[int] = None) -> List[Dict[str, Any]]:
        if last_n is None:
            return self.adjustment_history
        else:
            return self.adjustment_history[-last_n:]

    def register_event_listener(self, event_type: str, listener: callable):
        self.event_listeners[event_type].append(listener)

    def _trigger_event(self, event_type: str, event_data: Dict[str, Any]):
        if event_type in self.event_listeners:
            event_data['timestamp'] = datetime.now()
            for listener in self.event_listeners[event_type]:
                listener(event_data)

# --- Enhanced Emotional Intelligence ---
class EmotionalIntelligence:
    def __init__(self, empathy_level: float = 0.9, max_history: int = 1000, emotion_categories: List[str] = EMOTION_CATEGORIES):
        self.emotion_detector = nn.Sequential(
            nn.Linear(1024, 4096),
            nn.ReLU(),
            nn.Linear(4096, 2048),
            nn.ReLU(),
            nn.Linear(2048, len(emotion_categories)),
            nn.Softmax(dim=1)
        )
        self.response_generator = lambda c, e, t: f"Response with refined empathy {e} for {t} (context: {c})"
        self.empathy_level = empathy_level
        self.emotional_history = []
        self.max_history = max_history
        self.emotion_categories = emotion_categories
        self.event_listeners = defaultdict(list)

    def analyze_emotional_context(self, input_data: Dict[str, Any]) -> Dict[str, float]:
        emotional_scores = {}
        text_features = input_data.get('text_features')
        voice_features = input_data.get('voice_features')

        if text_features is not None:
            text_emotion = self._analyze_text_emotion(text_features)
            emotional_scores.update({'text_' + k: v for k, v in text_emotion.items()})
            self._trigger_event('text_emotion_analyzed', text_emotion)

        if voice_features is not None:
            voice_emotion = self._analyze_voice_emotion(voice_features)
            emotional_scores.update({'voice_' + k: v for k, v in voice_emotion.items()})
            self._trigger_event('voice_emotion_analyzed', voice_emotion)

        if emotional_scores:
            self.emotional_history.append((datetime.now(), emotional_scores))
        if len(self.emotional_history) > self.max_history:
            self.emotional_history.pop(0)

        return emotional_scores

    def _analyze_text_emotion(self, text_features: torch.Tensor) -> Dict[str, float]:
        emotion_output = self.emotion_detector(text_features).detach().numpy()[0]
        return dict(zip(self.emotion_categories, emotion_output))

    def _analyze_voice_emotion(self, voice_features: torch.Tensor) -> Dict[str, float]:
        emotion_output = self.emotion_detector(voice_features).detach().numpy()[0]
        return dict(zip(self.emotion_categories, emotion_output))

    def generate_empathetic_response(self,
                                   emotional_context: Dict[str, float],
                                   response_type: str) -> str:
        response = self.response_generator(emotional_context, self.empathy_level, response_type)
        self._trigger_event('empathetic_response_generated', {'response': response})
        return response

    def adjust_empathy_level(self, new_level: float):
        self.empathy_level = max(0.0, min(1.0, new_level))
        self._trigger_event('empathy_level_adjusted', {'new_level': self.empathy_level})

    def get_emotional_state_over_time(self, time_window: int = 480) -> List[Dict[str, float]]:
        now = datetime.now()
        emotional_states = [e for t, e in self.emotional_history if (now - t).total_seconds() <= time_window]
        return emotional_states

    def register_event_listener(self, event_type: str, listener: callable):
        self.event_listeners[event_type].append(listener)

    def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None):
        if event_type in self.event_listeners:
            event_data = event_data or {}
            event_data['timestamp'] = datetime.now()
            for listener in self.event_listeners[event_type]:
                listener(event_data)

# --- Enhanced Collaborative Problem Solver ---
class CollaborativeProblemSolver:
    def __init__(self, consensus_threshold: float = COLLABORATIVE_CONSENSUS_THRESHOLD, max_agents: int = MAX_COLLABORATIVE_AGENTS, solution_history_size: int = SOLUTION_HISTORY_SIZE):
        self.agent_pool = []
        self.collaboration_history = []
        self.consensus_threshold = consensus_threshold
        self.max_agents = max_agents
        self.solution_history_size = solution_history_size
        self.event_listeners = defaultdict(list)

    def add_agent(self, agent: Any):
        if len(self.agent_pool) < self.max_agents:
            self.agent_pool.append(agent)
            self._trigger_event('agent_added', {'agent_id': id(agent)})
        else:
            print("Maximum agent pool size reached. Cannot add more agents.")

    def solve_collaboratively(self, problem: Dict[str, Any]) -> Dict[str, Any]:
        solutions = []
        with concurrent.futures.ThreadPoolExecutor(max_workers=self.max_agents) as executor:
            future_to_agent = {executor.submit(agent.solve, problem): agent for agent in self.agent_pool}
            for future in concurrent.futures.as_completed(future_to_agent):
                try:
                    solution = future.result()
                    solutions.append(solution)
                    self._trigger_event('solution_generated', {'agent_id': id(future_to_agent[future])})
                except Exception as exc:
                    print(f"Agent generated an exception: {exc}")
                    self._trigger_event('agent_exception', {'agent_id': id(future_to_agent[future]), 'exception': str(exc)})

        consensus_solution = self._reach_consensus(solutions)
        self.collaboration_history.append({
            'problem': problem,
            'individual_solutions': solutions,
            'consensus': consensus_solution,
            'timestamp': datetime.now()
        })
        self._trigger_event('consensus_reached', {'consensus_solution': consensus_solution})

        # Trim collaboration history if it exceeds the maximum size
        if len(self.collaboration_history) > self.solution_history_size:
            self.collaboration_history = self.collaboration_history[-self.solution_history_size:]

        return consensus_solution

    def _reach_consensus(self, solutions: List[Dict[str, Any]]) -> Dict[str, Any]:
        if not solutions:
            return {}

        scores = defaultdict(float)
        for solution in solutions:
            for key, value in solution.items():
                if isinstance(value, (str, int, float)):
                    scores[(key, value)] += solution.get('confidence', 1.0)

        consensus_solution = {}
        for (key, value), score in scores.items():
            if score >= self.consensus_threshold * len(solutions):
                consensus_solution[key] = value

        if not consensus_solution:
            consensus_solution = max(solutions, key=lambda x: x.get('confidence', 0.0))

        return consensus_solution

    def get_collaboration_history(self, last_n: Optional[int] = None) -> List[Dict[str, Any]]:
        if last_n is None:
            return self.collaboration_history
        else:
            return self.collaboration_history[-last_n:]

    def register_event_listener(self, event_type: str, listener: callable):
        self.event_listeners[event_type].append(listener)

    def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None):
        if event_type in self.event_listeners:
            event_data = event_data or {}
            event_data['timestamp'] = datetime.now()
            for listener in self.event_listeners[event_type]:
                listener(event_data)

# --- Enhanced Ethical Constraints ---
class EthicalConstraints:
    def __init__(self, max_violations_history: int = MAX_ETHICAL_VIOLATIONS_HISTORY):
        self.ethical_principles = set()
        self.constraint_violations = []
        self.max_violations_history = max_violations_history
        self.event_listeners = defaultdict(list)

    def add_principle(self, principle: str, validation_function: callable):
        self.ethical_principles.add((principle, validation_function))
        self._trigger_event('principle_added', {'principle': principle})

    def validate_action(self, action: Dict[str, Any]) -> Tuple[bool, List[str]]:
        violations = []
        for principle, validator in self.ethical_principles:
            if not validator(action):
                violations.append(principle)
                self._trigger_event('principle_violated', {'principle': principle, 'action': action})

        is_ethical = len(violations) == 0
        if not is_ethical:
            self.constraint_violations.append({
                'action': action,
                'violations': violations,
                'timestamp': datetime.now()
            })
            self._manage_violations_history()

        return is_ethical, violations

    def get_violation_history(self, last_n: Optional[int] = None) -> List[Dict[str, Any]]:
        if last_n is None:
            return self.constraint_violations
        else:
            return self.constraint_violations[-last_n:]

    def _manage_violations_history(self):
        if len(self.constraint_violations) > self.max_violations_history:
            self.constraint_violations = self.constraint_violations[-self.max_violations_history:]

    def register_event_listener(self, event_type: str, listener: callable):
        self.event_listeners[event_type].append(listener)

    def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None):
        if event_type in self.event_listeners:
            event_data = event_data or {}
            event_data['timestamp'] = datetime.now()
            for listener in self.event_listeners[event_type]:
                listener(event_data)

# --- Enhanced Resource Optimizer ---
class ResourceOptimizer:
    def __init__(self, max_resource_history: int = MAX_RESOURCE_HISTORY):
        self.resource_usage = defaultdict(float)
        self.optimization_strategies = {}
        self.resource_history = []
        self.max_resource_history = max_resource_history
        self.event_listeners = defaultdict(list)

    def register_strategy(self, resource_type: str, strategy: callable):
        self.optimization_strategies[resource_type] = strategy
        self._trigger_event('strategy_registered', {'resource_type': resource_type})

    def optimize_resource_usage(self, resource_type: str, current_usage: float) -> Dict[str, Any]:
        optimized_usage = current_usage
        if resource_type in self.optimization_strategies:
            strategy = self.optimization_strategies[resource_type]
            optimized_usage = strategy(current_usage)

        optimization_result = {
            'type': resource_type,
            'original_usage': current_usage,
            'optimized_usage': optimized_usage,
            'timestamp': datetime.now()
        }
        self.resource_history.append(optimization_result)
        self._trigger_event('resource_optimized', optimization_result)
        self._manage_resource_history()

        self.resource_usage[resource_type] += optimized_usage
        return optimization_result

    def get_total_resource_usage(self) -> Dict[str, float]:
        return dict(self.resource_usage)

    def reset_resource_usage(self):
        self.resource_usage.clear()
        self._trigger_event('resource_usage_reset')

    def _manage_resource_history(self):
        if len(self.resource_history) > self.max_resource_history:
            self.resource_history = self.resource_history[-self.max_resource_history:]

    def register_event_listener(self, event_type: str, listener: callable):
        self.event_listeners[event_type].append(listener)

    def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None):
        if event_type in self.event_listeners:
            event_data = event_data or {}
            event_data['timestamp'] = datetime.now()
            for listener in self.event_listeners[event_type]:
                listener(event_data)

# --- Enhanced Predictive Model ---
class PredictiveModel:
    def __init__(self, max_models: int = MAX_PREDICTIVE_MODELS, max_prediction_history: int = MAX_PREDICTION_HISTORY):
        self.models = {}
        self.prediction_history = []
        self.max_models = max_models
        self.max_prediction_history = max_prediction_history
        self.model_usage_timestamps = {}
        self.event_listeners = defaultdict(list)

    def add_model(self, model_name: str, model: Any):
        if len(self.models) >= self.max_models:
            self._remove_least_used_model()
        self.models[model_name] = model
        self.model_usage_timestamps[model_name] = datetime.now()
        self._trigger_event('model_added', {'model_name': model_name})

    def make_prediction(self, model_name: str, input_data: Dict[str, Any]) -> Dict[str, Any]:
        if model_name in self.models:
            model = self.models[model_name]
            self.model_usage_timestamps[model_name] = datetime.now()
            try:
                prediction = model(input_data)
                prediction_record = {
                    'model': model_name,
                    'input': input_data,
                    'prediction': prediction,
                    'timestamp': datetime.now()
                }
                self.prediction_history.append(prediction_record)
                self._trigger_event('prediction_made', prediction_record)
                self._manage_prediction_history()
                return prediction
            except Exception as e:
                print(f"Error during prediction with model {model_name}: {e}")
                error_record = {'model': model_name, 'error': str(e), 'timestamp': datetime.now()}
                self._trigger_event('prediction_error', error_record)
                return {'error': f'Prediction failed: {e}'}
        return {'error': 'Model not found'}

    def get_prediction_history(self, last_n: Optional[int] = None) -> List[Dict[str, Any]]:
        if last_n is None:
            return self.prediction_history
        else:
            return self.prediction_history[-last_n:]

    def _remove_least_used_model(self):
        lru_model = min(self.model_usage_timestamps, key=self.model_usage_timestamps.get)
        if lru_model in self.models:
          del self.models[lru_model]
          del self.model_usage_timestamps[lru_model]
          self._trigger_event('model_removed', {'model_name': lru_model})

    def _manage_prediction_history(self):
        if len(self.prediction_history) > self.max_prediction_history:
            self.prediction_history = self.prediction_history[-self.max_prediction_history:]

    def register_event_listener(self, event_type: str, listener: callable):
        self.event_listeners[event_type].append(listener)

    def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None):
        if event_type in self.event_listeners:
            event_data = event_data or {}
            event_data['timestamp'] = datetime.now()
            for listener in self.event_listeners[event_type]:
                listener(event_data)

# --- Enhanced Memory Consolidation ---
class MemoryConsolidation:
    def __init__(self, short_term_capacity: int = SHORT_TERM_MEMORY_CAPACITY, consolidation_threshold: int = MEMORY_CONSOLIDATION_THRESHOLD, long_term_capacity: int = LONG_TERM_MEMORY_CAPACITY):
        self.short_term_memory = []
        self.long_term_memory = {}
        self.priority_queue = []
        self.short_term_capacity = short_term_capacity
        self.consolidation_threshold = consolidation_threshold
        self.long_term_capacity = long_term_capacity
        self.access_counts = defaultdict(int)
        self.event_listeners = defaultdict(list)

    def add_memory(self, memory: Dict[str, Any], priority: float):
        self.short_term_memory.append(memory)
        heapq.heappush(self.priority_queue, (-priority, len(self.short_term_memory) - 1))
        self._trigger_event('memory_added', {'type': 'short_term', 'memory': memory})

        if len(self.short_term_memory) > self.short_term_capacity:
            self._consolidate_memories()
            self._manage_long_term_memory()

    def _consolidate_memories(self):
        memory_counts = defaultdict(int)
        for memory in self.short_term_memory:
            key = self._generate_memory_key(memory)
            memory_counts[key] += 1

        consolidated = False
        for key, count in memory_counts.items():
            if count >= self.consolidation_threshold:
                if key not in self.long_term_memory:
                    for mem in self.short_term_memory:
                        if self._generate_memory_key(mem) == key:
                            self.long_term_memory[key] = mem
                            self._trigger_event('memory_added', {'type': 'long_term', 'memory': mem})
                            consolidated = True
                            break

        if consolidated:
            self.short_term_memory = [mem for mem in self.short_term_memory if memory_counts[self._generate_memory_key(mem)] < self.consolidation_threshold]
            self.priority_queue = [(-p, i) for p, i in self.priority_queue if i < len(self.short_term_memory)]
            heapq.heapify(self.priority_queue)

    def _generate_memory_key(self, memory: Dict[str, Any]) -> str:
        key_parts = [str(memory.get('type', 'unknown'))]

        if 'timestamp' in memory:
            key_parts.append(str(memory['timestamp'].timestamp()))

        if 'content' in memory:
            if isinstance(memory['content'], str):
                key_parts.append(memory['content'][:100])  # Increased length for better key uniqueness
            elif isinstance(memory['content'], dict):
                key_parts.extend([f"{k}:{str(v)[:100]}" for k, v in memory['content'].items()])

        return '_'.join(key_parts)

    def retrieve_long_term_memory(self, key: str) -> Optional[Dict[str, Any]]:
        if key in self.long_term_memory:
            self.access_counts[key] += 1
            self._trigger_event('memory_retrieved', {'type': 'long_term', 'key': key})
            return self.long_term_memory[key]
        return None

    def _manage_long_term_memory(self):
        if len(self.long_term_memory) > self.long_term_capacity:
            # Remove least frequently accessed memories
            sorted_memories = sorted(self.long_term_memory.items(), key=lambda item: self.access_counts[item[0]])
            keys_to_remove = [key for key, _ in sorted_memories[:len(self.long_term_memory) - self.long_term_capacity]]
            for key in keys_to_remove:
                del self.long_term_memory[key]
                del self.access_counts[key]
                self._trigger_event('memory_removed', {'type': 'long_term', 'key': key})
    
    def register_event_listener(self, event_type: str, listener: callable):
        self.event_listeners[event_type].append(listener)

    def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None):
        if event_type in self.event_listeners:
            event_data = event_data or {}
            event_data['timestamp'] = datetime.now()
            for listener in self.event_listeners[event_type]:
                listener(event_data)

# --- Enhanced Cognitive Style Manager ---
class CognitiveStyleManager:
    def __init__(self, max_style_history: int = MAX_COGNITIVE_STYLE_HISTORY):
        self.available_styles = {}
        self.active_style = None
        self.style_history = []
        self.max_style_history = max_style_history
        self.event_listeners = defaultdict(list)

    def register_style(self, style_name: str, style_parameters: Dict[str, Any]):
        self.available_styles[style_name] = style_parameters
        self._trigger_event('style_registered', {'style_name': style_name})

    def activate_style(self, style_name: str) -> bool:
        if style_name in self.available_styles:
            self.active_style = style_name
            self.style_history.append((style_name, datetime.now()))
            if len(self.style_history) > self.max_style_history:
                self.style_history.pop(0)
            self._trigger_event('style_activated', {'style_name': style_name})
            return True
        return False

    def get_current_style_parameters(self) -> Optional[Dict[str, Any]]:
        if self.active_style:
            return self.available_styles[self.active_style]
        return None

    def get_style_history(self, last_n: Optional[int] = None) -> List[Tuple[str, datetime]]:
        if last_n is None:
            return self.style_history
        else:
            return self.style_history[-last_n:]

    def register_event_listener(self, event_type: str, listener: callable):
        self.event_listeners[event_type].append(listener)

    def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None):
        if event_type in self.event_listeners:
            event_data = event_data or {}
            event_data['timestamp'] = datetime.now()
            for listener in self.event_listeners[event_type]:
                listener(event_data)

# --- Enhanced Uncertainty Quantifier ---
class UncertaintyQuantifier:
    def __init__(self):
        self.uncertainty_metrics = {}
        self.confidence_thresholds = {}
        self.event_listeners = defaultdict(list)

    def quantify_uncertainty(self,
                           prediction: Any,
                           method: str = 'bayesian',
                           **kwargs) -> Dict[str, float]:
        if method == 'bayesian':
            result = self._bayesian_uncertainty(prediction, **kwargs)
        elif method == 'ensemble':
            result = self._ensemble_uncertainty(prediction, **kwargs)
        elif method == 'confidence_scores':
            result = self._confidence_score_uncertainty(prediction, **kwargs)
        elif method == 'gaussian_processes':
            result = self._gaussian_process_uncertainty(prediction, **kwargs)
        else:
            result = {'error': 'Unsupported uncertainty quantification method'}

        self._trigger_event('uncertainty_quantified', {'method': method, 'result': result})
        return result

    def _bayesian_uncertainty(self, prediction: Any, **kwargs) -> Dict[str, float]:
        if isinstance(prediction, dict) and 'probabilities' in prediction:
            probabilities = prediction['probabilities']
            if isinstance(probabilities, list):
                entropy = -sum(p * np.log2(p) for p in probabilities if p > 0)
                return {'bayesian_entropy': entropy}
        return {'error': 'Bayesian uncertainty not applicable'}

    def _ensemble_uncertainty(self, prediction: Any, **kwargs) -> Dict[str, float]:
        if isinstance(prediction, list):
            variances = np.var(prediction, axis=0)
            return {'ensemble_variance': variances.tolist() if isinstance(variances, np.ndarray) else variances}
        return {'error': 'Ensemble uncertainty not applicable'}

    def _confidence_score_uncertainty(self, prediction: Any, **kwargs) -> Dict[str, float]:
        if isinstance(prediction, dict) and 'confidence' in prediction:
            confidence = prediction['confidence']
            uncertainty = 1.0 - confidence
            return {'uncertainty': uncertainty}
        return {'error': 'Confidence score uncertainty not applicable'}
    
    def _gaussian_process_uncertainty(self, prediction: Any, **kwargs) -> Dict[str, float]:
        if isinstance(prediction, dict) and 'mean' in prediction and 'std' in prediction:
            std_dev = prediction['std']
            return {'gaussian_process_std': std_dev}
        return {'error': 'Gaussian process uncertainty not applicable'}
    
    def register_event_listener(self, event_type: str, listener: callable):
        self.event_listeners[event_type].append(listener)

    def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None):
        if event_type in self.event_listeners:
            event_data = event_data or {}
            event_data['timestamp'] = datetime.now()
            for listener in self.event_listeners[event_type]:
                listener(event_data)

# --- Enhanced Goal Alignment System ---
class GoalAlignmentSystem:
    def __init__(self, alignment_threshold=GOAL_ALIGNMENT_THRESHOLD, max_goals: int = MAX_GOALS, max_safety_constraints: int = MAX_SAFETY_CONSTRAINTS):
        self.goals = []
        self.alignment_metrics = {}
        self.safety_constraints = set()
        self.alignment_threshold = alignment_threshold
        self.max_goals = max_goals
        self.max_safety_constraints = max_safety_constraints
        self.event_listeners = defaultdict(list)

    def add_goal(self, goal: Dict[str, Any]):
        if len(self.goals) >= self.max_goals:
            self._remove_lowest_priority_goal()

        if not goal.get('id'):
            goal['id'] = f"goal_{len(self.goals)}"
        self.goals.append(goal)
        self._update_alignment_metrics(goal)
        self._trigger_event('goal_added', {'goal_id': goal['id']})

    def _remove_lowest_priority_goal(self):
        lowest_priority_goal = min(self.goals, key=lambda g: g.get('priority', 0))
        self.goals.remove(lowest_priority_goal)
        self._trigger_event('goal_removed', {'goal_id': lowest_priority_goal['id']})

    def _update_alignment_metrics(self, goal: Dict[str, Any]):
        for existing_goal in self.goals:
            if existing_goal['id'] != goal['id']:
                alignment_score = self._calculate_alignment(existing_goal, goal)
                self.alignment_metrics[(existing_goal['id'], goal['id'])] = alignment_score
                self.alignment_metrics[(goal['id'], existing_goal['id'])] = alignment_score

    def _calculate_alignment(self, goal1: Dict[str, Any], goal2: Dict[str, Any]) -> float:
        similarity = 0.0
        if goal1.get('type') == goal2.get('type'):
            similarity += 0.4
            if goal1.get('target') == goal2.get('target'):
                similarity += 0.4
            if goal1.get('priority', 0) == goal2.get('priority', 0):
                similarity += 0.2
        else:
          similarity += 0.1

        return min(similarity, 1.0)

    def check_alignment(self, goal_id: str) -> Dict[str, float]:
        alignments = {}
        for other_goal in self.goals:
            if other_goal['id'] != goal_id:
                alignment_score = self.alignment_metrics.get((goal_id, other_goal['id']), 0.0)
                if alignment_score >= self.alignment_threshold:
                    alignments[other_goal['id']] = alignment_score
        return alignments

    def add_safety_constraint(self, constraint: str, details: Optional[Dict[str, Any]] = None):
        if len(self.safety_constraints) < self.max_safety_constraints:
            self.safety_constraints.add((constraint, details or {}))
            self._trigger_event('safety_constraint_added', {'constraint': constraint, 'details': details})
        else:
            print("Maximum number of safety constraints reached.")

    def validate_goal_against_constraints(self, goal: Dict[str, Any]) -> Tuple[bool, List[str]]:
        violations = []
        for constraint, details in self.safety_constraints:
            if "no_harm" == constraint and goal.get("action") == "harm":
                violations.append(constraint)
            if "user_autonomy" == constraint and not goal.get("user_approved", False):
                violations.append(constraint)
            if "avoid_deception" == constraint and goal.get("deceptive", False):
                violations.append(constraint)
            if "ensure_privacy" == constraint and goal.get("privacy_risk", False):
              violations.append(constraint)
            if "promote_fairness" == constraint and goal.get("unfair", False):
              violations.append(constraint)

        is_safe = len(violations) == 0
        return is_safe, violations
    
    def register_event_listener(self, event_type: str, listener: callable):
        self.event_listeners[event_type].append(listener)

    def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None):
        if event_type in self.event_listeners:
            event_data = event_data or {}
            event_data['timestamp'] = datetime.now()
            for listener in self.event_listeners[event_type]:
                listener(event_data)

# --- Enhanced Multi-Language Creativity ---
class MultiLanguageCreativity:
    def __init__(self, max_languages: int = MAX_LANGUAGES):
        self.language_models = {}
        self.creativity_engines = {}
        self.max_languages = max_languages
        self.event_listeners = defaultdict(list)

    def add_language_model(self, language: str, model: Any):
        if len(self.language_models) < self.max_languages:
            self.language_models[language] = model
            self._trigger_event('language_model_added', {'language': language})
        else:
            print("Maximum number of language models reached.")

    def add_creativity_engine(self, language: str, engine: Any):
        if len(self.creativity_engines) < self.max_languages:
            self.creativity_engines[language] = engine
            self._trigger_event('creativity_engine_added', {'language': language})
        else:
            print("Maximum number of creativity engines reached.")

    def generate_creative_content(self,
                                prompt: str,
                                language: str,
                                creativity_level: float) -> str:
        if language in self.language_models:
            if language in self.creativity_engines:
                base_content = self.language_models[language](prompt)
                creative_content = self.creativity_engines[language](
                    base_content,
                    creativity_level
                )
                self._trigger_event('creative_content_generated', {'language': language, 'creativity_level': creativity_level})
                return creative_content
            else:
                return self.language_models[language](prompt)
        return f"Unsupported language: {language}"

    def list_supported_languages(self) -> List[str]:
        return list(self.language_models.keys())

    def register_event_listener(self, event_type: str, listener: callable):
        self.event_listeners[event_type].append(listener)

    def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None):
        if event_type in self.event_listeners:
            event_data = event_data or {}
            event_data['timestamp'] = datetime.now()
            for listener in self.event_listeners[event_type]:
                listener(event_data)

# --- Enhanced Quantum Processor ---
class QuantumProcessor:
    def __init__(self, max_results_history: int = QUANTUM_MAX_RESULTS_HISTORY):
        self.quantum_circuit = None
        self.classical_interface = None
        self.results_history = []
        self.max_results_history = max_results_history
        self.event_listeners = defaultdict(list)

    def initialize_quantum_circuit(self, num_qubits: int):
        print(f"Initializing quantum circuit with {num_qubits} qubits.")
        self.quantum_circuit = {"num_qubits": num_qubits, "circuit": []}
        self._trigger_event('quantum_circuit_initialized', {'num_qubits': num_qubits})

    def add_gate(self, gate_type: str, target_qubits: List[int], params: Optional[Dict[str, Any]] = None):
        if self.quantum_circuit is None:
            raise ValueError("Quantum circuit not initialized")
        self.quantum_circuit["circuit"].append({"gate": gate_type, "targets": target_qubits, "params": params or {}})
        print(f"Added {gate_type} gate on qubits {target_qubits} with params {params}")
        self._trigger_event('gate_added', {'gate_type': gate_type, 'target_qubits': target_qubits, 'params': params})

    def run_quantum_algorithm(self,
                            algorithm_type: str,
                            input_data: Dict[str, Any]) -> Dict[str, Any]:
        if self.quantum_circuit is None:
            return {"error": "Quantum circuit not initialized"}

        try:
            print(f"Executing {algorithm_type} quantum algorithm")
            if algorithm_type == "Shor's":
                result = self._shors_algorithm(input_data)
            elif algorithm_type == "Grover's":
                result = self._grovers_algorithm(input_data)
            elif algorithm_type == "QAOA":
                result = self._qaoa_algorithm(input_data)
            elif algorithm_type == "VQE":
                result = self._vqe_algorithm(input_data)
            elif algorithm_type == "HHL":
                result = self._hhl_algorithm(input_data)
            else:
                result = self._execute_quantum_computation(algorithm_type, input_data)

            result_record = {
                "algorithm": algorithm_type,
                "input": input_data,
                "result": result,
                "timestamp": datetime.now()
            }
            self.results_history.append(result_record)
            self._trigger_event('quantum_algorithm_executed', result_record)
            self._manage_results_history()
            return {"result": result, "status": "success"}
        except Exception as e:
            print(f"Error during quantum computation: {e}")
            error_record = {"error": str(e), "status": "failed", "timestamp": datetime.now()}
            self._trigger_event('quantum_computation_error', error_record)
            return {"error": str(e), "status": "failed"}

    def _execute_quantum_computation(self, algorithm_type: str, input_data: Dict[str, Any]) -> Any:
        print(f"Simulating {algorithm_type} with input: {input_data}")
        time.sleep(random.uniform(1, 3))
        if random.random() < 0.2:  # Increased error rate for simulation
            raise Exception("Quantum decoherence error")

        return {"simulated_output": random.randint(0, 1000)}  # Increased range for simulation

    def _shors_algorithm(self, input_data: Dict[str, Any]) -> Any:
        number_to_factor = input_data.get("number", 15)
        print(f"Applying Shor's algorithm to factor {number_to_factor}")
        if number_to_factor == 15:
            return {"factors": [3, 5]}
        elif number_to_factor == 21:
            return {"factors": [3, 7]}
        else:
            return {"factors": [1, number_to_factor]}

    def _grovers_algorithm(self, input_data: Dict[str, Any]) -> Any:
        search_space = input_data.get("search_space", [0, 1, 2, 3])
        target_element = input_data.get("target", 2)
        print(f"Applying Grover's algorithm to find {target_element} in {search_space}")
        if target_element in search_space:
            return {"found": target_element}
        else:
            return {"found": None}

    def _qaoa_algorithm(self, input_data: Dict[str, Any]) -> Any:
        graph = input_data.get("graph", {"nodes": [0, 1], "edges": [[0, 1]]})
        print(f"Applying QAOA algorithm to graph {graph}")
        return {"optimal_solution": [0, 1]}

    def _vqe_algorithm(self, input_data: Dict[str, Any]) -> Any:
        hamiltonian = input_data.get("hamiltonian", "H2")
        print(f"Applying VQE algorithm to find the ground state of {hamiltonian}")
        if hamiltonian == "H2":
            return {"ground_state_energy": -1.137}
        else:
            return {"ground_state_energy": -1.0}
        
    def _hhl_algorithm(self, input_data: Dict[str, Any]) -> Any:
        matrix = input_data.get("matrix", [[1.5, 0.5], [0.5, 1.5]])
        vector = input_data.get("vector", [0, 1])
        print(f"Applying HHL algorithm to solve linear system with matrix {matrix} and vector {vector}")
        return {"solution": [0.5, 0.5]}

    def get_results_history(self, last_n: Optional[int] = None) -> List[Dict[str, Any]]:
        if last_n is None:
            return self.results_history
        else:
            return self.results_history[-last_n:]

    def _manage_results_history(self):
        if len(self.results_history) > self.max_results_history:
            self.results_history = self.results_history[-self.max_results_history:]

    def register_event_listener(self, event_type: str, listener: callable):
        self.event_listeners[event_type].append(listener)

    def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None):
        if event_type in self.event_listeners:
            event_data = event_data or {}
            event_data['timestamp'] = datetime.now()
            for listener in self.event_listeners[event_type]:
                listener(event_data)

# --- Enhanced Adaptive Neural Network ---
class AdaptiveNeuralNetwork:
    def __init__(self, input_dim: int, hidden_dims: List[int], output_dim: int = 10, activation_fn: str = "relu", dropout_rate: float = 0.0, max_layers: int = ADAPTIVE_NEURAL_NETWORK_MAX_LAYERS, max_layer_size: int = ADAPTIVE_NEURAL_NETWORK_MAX_LAYER_SIZE):
        self.layers = nn.ModuleList()
        self.input_dim = input_dim
        self.hidden_dims = hidden_dims
        self.output_dim = output_dim
        self.activation_fn = self._get_activation_fn(activation_fn)
        self.dropout_rate = dropout_rate
        self.max_layers = max_layers
        self.max_layer_size = max_layer_size
        self._build_network()
        self.event_listeners = defaultdict(list)

    def _get_activation_fn(self, activation_fn: str):
        if activation_fn == "relu":
            return nn.ReLU()
        elif activation_fn == "sigmoid":
            return nn.Sigmoid()
        elif activation_fn == "tanh":
            return nn.Tanh()
        elif activation_fn == "leaky_relu":
            return nn.LeakyReLU()
        elif activation_fn == "elu":
            return nn.ELU()
        elif activation_fn == "prelu":
            return nn.PReLU()
        elif activation_fn == "selu":
            return nn.SELU()
        else:
            raise ValueError(f"Invalid activation function: {activation_fn}")

    def _build_network(self):
        self.layers.clear()
        dims = [self.input_dim] + self.hidden_dims + [self.output_dim]
        for i in range(len(dims) - 1):
            self.layers.append(nn.Linear(dims[i], dims[i + 1]))
            if i < len(dims) - 2:
                self.layers.append(self.activation_fn)
                if self.dropout_rate > 0.0:
                    self.layers.append(nn.Dropout(self.dropout_rate))
        self._trigger_event('network_built', {'hidden_dims': self.hidden_dims})

    def adapt_architecture(self, performance_metrics: Dict[str, float]):
        if performance_metrics.get('loss', 1.0) > 0.5 and len(self.hidden_dims) < self.max_layers:
            new_dim = min(self.hidden_dims[-1] * 2, self.max_layer_size) if self.hidden_dims else self.input_dim
            self.hidden_dims.append(new_dim)
            self._build_network()
            print(f"Added new hidden layer. New architecture: {self.hidden_dims}")
            self._trigger_event('layer_added', {'new_dim': new_dim})
        elif performance_metrics.get('accuracy', 0.0) < NETWORK_ADAPTATION_THRESHOLD and self.hidden_dims:
            if self.hidden_dims[-1] < self.max_layer_size:
                self.hidden_dims[-1] = min(int(self.hidden_dims[-1] * 1.5), self.max_layer_size)
                self._build_network()
                print(f"Increased last hidden layer size. New architecture: {self.hidden_dims}")
                self._trigger_event('layer_expanded', {'new_size': self.hidden_dims[-1]})
        elif performance_metrics.get('loss', 1.0) < 0.1 and len(self.hidden_dims) > 1:
            self.hidden_dims.pop()
            self._build_network()
            print(f"Removed last hidden layer due to potential overfitting. New architecture: {self.hidden_dims}")
            self._trigger_event('layer_removed', {})

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        for layer in self.layers:
            x = layer(x)
        return x

    def get_num_layers(self) -> int:
        return len(self.hidden_dims) + 1

    def get_layer_sizes(self) -> List[int]:
        return [self.input_dim] + self.hidden_dims + [self.output_dim]

    def register_event_listener(self, event_type: str, listener: callable):
        self.event_listeners[event_type].append(listener)

    def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None):
        if event_type in self.event_listeners:
            event_data = event_data or {}
            event_data['timestamp'] = datetime.now()
            for listener in self.event_listeners[event_type]:
                listener(event_data)

# --- Enhanced Real-World Interaction ---
class RealWorldInteraction:
    def __init__(self, max_interaction_history: int = MAX_INTERACTION_HISTORY):
        self.sensor_interfaces = {}
        self.actuator_interfaces = {}
        self.interaction_history = []
        self.max_interaction_history = max_interaction_history
        self.event_listeners = defaultdict(list)

    def register_sensor(self, sensor_name: str, sensor_interface: Any):
        self.sensor_interfaces[sensor_name] = sensor_interface
        self._trigger_event('sensor_registered', {'sensor_name': sensor_name})

    def register_actuator(self, actuator_name: str, actuator_interface: Any):
        self.actuator_interfaces[actuator_name] = actuator_interface
        self._trigger_event('actuator_registered', {'actuator_name': actuator_name})

    def process_sensor_data(self, sensor_name: str) -> Dict[str, Any]:
        if sensor_name in self.sensor_interfaces:
            data = self.sensor_interfaces[sensor_name].read()
            interaction_record = {
                'type': 'sensor_read',
                'sensor': sensor_name,
                'data': data,
                'timestamp': datetime.now()
            }
            self.interaction_history.append(interaction_record)
            self._trigger_event('sensor_data_processed', interaction_record)
            self._manage_interaction_history()
            return data
        return {'error': f'Sensor {sensor_name} not found'}

    def execute_action(self, actuator_name: str, action: Dict[str, Any]) -> bool:
        if actuator_name in self.actuator_interfaces:
            success = self.actuator_interfaces[actuator_name].execute(action)
            interaction_record = {
                'type': 'actuator_execute',
                'actuator': actuator_name,
                'action': action,
                'success': success,
                'timestamp': datetime.now()
            }
            self.interaction_history.append(interaction_record)
            self._trigger_event('action_executed', interaction_record)
            self._manage_interaction_history()
            return success
        return False

    def get_interaction_history(self, last_n: Optional[int] = None) -> List[Dict[str, Any]]:
        if last_n is None:
            return self.interaction_history
        else:
            return self.interaction_history[-last_n:]

    def _manage_interaction_history(self):
        if len(self.interaction_history) > self.max_interaction_history:
            self.interaction_history = self.interaction_history[-self.max_interaction_history:]

    def register_event_listener(self, event_type: str, listener: callable):
        self.event_listeners[event_type].append(listener)

    def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None):
        if event_type in self.event_listeners:
            event_data = event_data or {}
            event_data['timestamp'] = datetime.now()
            for listener in self.event_listeners[event_type]:
                listener(event_data)

# --- Enhanced Modular Architecture ---
class ModularArchitecture:
    def __init__(self):
        self.modules = {}
        self.dependencies = defaultdict(set)
        self.module_configs = {}
        self.initialization_status = {}
        self.event_listeners = defaultdict(list)

    def register_module(self, module_name: str,
                       module_instance: Any,
                       config: Optional[Dict[str, Any]] = None):
        self.modules[module_name] = module_instance
        self.initialization_status[module_name] = False
        if config:
            self.module_configs[module_name] = config
        self._trigger_event('module_registered', {'module_name': module_name})

    def add_dependency(self, module_name: str, depends_on: str):
        self.dependencies[module_name].add(depends_on)
        self._trigger_event('dependency_added', {'module_name': module_name, 'depends_on': depends_on})

    def get_module(self, module_name: str) -> Optional[Any]:
        return self.modules.get(module_name)

    def get_module_dependencies(self, module_name: str) -> Set[str]:
        return self.dependencies.get(module_name, set())

    def get_module_config(self, module_name: str) -> Optional[Dict[str, Any]]:
        return self.module_configs.get(module_name)

    def initialize_modules(self):
        initialized = set()
        while len(initialized) < len(self.modules):
            initialized_this_round = set()
            for module_name, module in self.modules.items():
                if module_name not in initialized:
                    deps = self.get_module_dependencies(module_name)
                    if all(dep in initialized for dep in deps):
                        if hasattr(module, 'initialize') and callable(module.initialize):
                            config = self.get_module_config(module_name)
                            try:
                                if config:
                                    module.initialize(**config)
                                else:
                                    module.initialize()
                                self._trigger_event('module_initialized', {'module_name': module_name})
                            except Exception as e:
                                print(f"Error initializing module {module_name}: {e}")
                                self._trigger_event('module_initialization_error', {'module_name': module_name, 'error': str(e)})
                        initialized.add(module_name)
                        initialized_this_round.add(module_name)
            if not initialized_this_round:
                raise Exception("Circular dependencies or missing modules detected.")

    def register_event_listener(self, event_type: str, listener: callable):
        self.event_listeners[event_type].append(listener)

    def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None):
        if event_type in self.event_listeners:
            event_data = event_data or {}
            event_data['timestamp'] = datetime.now()
            for listener in self.event_listeners[event_type]:
                listener(event_data)

class EnhancedCognitiveSystem:
    def __init__(self, training_data_path: Optional[str] = None):
        self.context_manager = GeneralizedContextManager()
        self.knowledge_graph = DynamicKnowledgeGraph()
        self.causal_engine = CausalEngine()
        self.cross_domain = CrossDomainMastery()
        self.multimodal = IntuitiveMultimodalUnderstanding()
        self.adaptive_learning = AdaptiveLearning()
        self.emotional = EmotionalIntelligence()
        self.collaborative = CollaborativeProblemSolver()
        self.ethical = EthicalConstraints()
        self.resource_optimizer = ResourceOptimizer()
        self.predictive = PredictiveModel()
        self.memory = MemoryConsolidation()
        self.cognitive_style = CognitiveStyleManager()
        self.uncertainty = UncertaintyQuantifier()
        self.goal_alignment = GoalAlignmentSystem()
        self.creativity = MultiLanguageCreativity()
        self.quantum = QuantumProcessor()
        self.neural_network = AdaptiveNeuralNetwork(TEXT_EMBEDDING_DIM, [8192, 4096, 2048], output_dim=RESPONSE_MODEL_OUTPUT_DIM)
        self.real_world = RealWorldInteraction()
        self.architecture = ModularArchitecture()

        # Register modules with the architecture
        self.architecture.register_module("context_manager", self.context_manager)
        self.architecture.register_module("knowledge_graph", self.knowledge_graph)
        self.architecture.register_module("causal_engine", self.causal_engine)
        self.architecture.register_module("cross_domain", self.cross_domain)
        self.architecture.register_module("multimodal", self.multimodal)
        self.architecture.register_module("adaptive_learning", self.adaptive_learning)
        self.architecture.register_module("emotional", self.emotional)
        self.architecture.register_module("collaborative", self.collaborative)
        self.architecture.register_module("ethical", self.ethical)
        self.architecture.register_module("resource_optimizer", self.resource_optimizer)
        self.architecture.register_module("predictive", self.predictive)
        self.architecture.register_module("memory", self.memory)
        self.architecture.register_module("cognitive_style", self.cognitive_style)
        self.architecture.register_module("uncertainty", self.uncertainty)
        self.architecture.register_module("goal_alignment", self.goal_alignment)
        self.architecture.register_module("creativity", self.creativity)
        self.architecture.register_module("quantum", self.quantum)
        self.architecture.register_module("neural_network", self.neural_network)
        self.architecture.register_module("real_world", self.real_world)

        # Define dependencies between modules
        self.architecture.add_dependency("knowledge_graph", "context_manager")
        self.architecture.add_dependency("causal_engine", "knowledge_graph")
        self.architecture.add_dependency("multimodal", "neural_network")
        self.architecture.add_dependency("emotional", "multimodal")
        self.architecture.add_dependency("collaborative", "goal_alignment")
        self.architecture.add_dependency("predictive", "neural_network")
        self.architecture.add_dependency("predictive", "uncertainty")
        self.architecture.add_dependency("memory", "context_manager")
        self.architecture.add_dependency("goal_alignment", "ethical")

        # Initialize modules
        self.architecture.initialize_modules()

        # Initialize training data path
        self.training_data_path = training_data_path or "training_data.csv"
        self.response_model = ResponseModel(TEXT_EMBEDDING_DIM, RESPONSE_MODEL_HIDDEN_DIM, RESPONSE_MODEL_OUTPUT_DIM)

        if os.path.exists(self.training_data_path):
            self.load_training_data(self.training_data_path)
            self.train_response_model()

        # Register event listeners
        self.register_event_listeners()
        
    def load_training_data(self, file_path: str):
      try:
        self.training_data = pd.read_csv(file_path)
      except Exception as e:
        print(f"Error reading CSV file: {e}")
        
    def create_dataset(self, test_size=0.2, random_state=42):
        prompts = self.training_data['prompt'].tolist()
        responses = self.training_data['response'].tolist()
        
        # Convert prompts and responses to numerical features
        prompt_features = [self.numericalize_text(p) for p in prompts]
        response_features = [self.numericalize_text(r) for r in responses]

        # Pad sequences to the maximum sequence length
        max_len = max(max(len(p) for p in prompt_features), max(len(r) for r in response_features))
        prompt_features = [self.pad_sequence(p, max_len) for p in prompt_features]
        response_features = [self.pad_sequence(r, max_len) for r in response_features]

        # Split data into training and testing sets
        X_train, X_test, y_train, y_test = train_test_split(
            prompt_features, response_features, test_size=test_size, random_state=random_state
        )

        # Create TensorDatasets
        train_dataset = TensorDataset(torch.tensor(X_train, dtype=torch.float32), 
                                      torch.tensor(y_train, dtype=torch.float32))
        test_dataset = TensorDataset(torch.tensor(X_test, dtype=torch.float32), 
                                     torch.tensor(y_test, dtype=torch.float32))

        return train_dataset, test_dataset

    def numericalize_text(self, text: str) -> List[float]:
        # Convert text to numerical features using a simple method (e.g., ASCII values)
        return [float(ord(c)) for c in text]

    def pad_sequence(self, sequence: List[float], max_len: int) -> List[float]:
        # Pad sequences to the maximum length
        if len(sequence) < max_len:
            return sequence + [0.0] * (max_len - len(sequence))
        return sequence[:max_len]

    def train_response_model(self, batch_size=TRAINING_BATCH_SIZE, epochs=TRAINING_EPOCHS, learning_rate=TRAINING_LEARNING_RATE):
        train_dataset, test_dataset = self.create_dataset()
        train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
        test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
        optimizer = torch.optim.Adam(self.response_model.parameters(), lr=learning_rate)
        criterion = nn.MSELoss()

        for epoch in range(epochs):
            self.response_model.train()
            train_loss = 0
            for batch in tqdm(train_loader, desc=f"Epoch {epoch+1}/{epochs} [Training]"):
                optimizer.zero_grad()
                inputs, targets = batch
                outputs = self.response_model(inputs)
                loss = criterion(outputs, targets)
                loss.backward()
                optimizer.step()
                train_loss += loss.item()

            avg_train_loss = train_loss / len(train_loader)

            self.response_model.eval()
            test_loss = 0
            with torch.no_grad():
                for batch in tqdm(test_loader, desc=f"Epoch {epoch+1}/{epochs} [Testing]"):
                    inputs, targets = batch
                    outputs = self.response_model(inputs)
                    loss = criterion(outputs, targets)
                    test_loss += loss.item()

            avg_test_loss = test_loss / len(test_loader)
            print(f"Epoch {epoch+1}/{epochs}, Training Loss: {avg_train_loss:.4f}, Testing Loss: {avg_test_loss:.4f}")

        print("Training complete.")

    def process_input(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
        start_time = time.time()

        self.context_manager.add_context('input', input_data, metadata={'source': 'user'})

        multimodal_features = self.multimodal.process_multimodal_input(
            input_data.get('visual'),
            input_data.get('text'),
            input_data.get('audio')
        )

        if multimodal_features.numel() > 0:
            self.knowledge_graph.add_knowledge(
                'input_context',
                {'features': multimodal_features.tolist()},
                datetime.now()
            )

        emotional_context = self.emotional.analyze_emotional_context({
            'text_features': input_data.get('text_features'),
            'voice_features': input_data.get('voice_features')
        })

        if input_data.get('problem'):
            solution = self.collaborative.solve_collaboratively(input_data['problem'])
            self.memory.add_memory({'type': 'solution', 'content': solution}, priority=0.9)

        style = self.cognitive_style.get_current_style_parameters()
        predictions = self.predictive.make_prediction('response', {
            'input': input_data,
            'features': multimodal_features,
            'style': style
        })

        uncertainty = self.uncertainty.quantify_uncertainty(predictions)

        is_ethical, violations = self.ethical.validate_action({
            'type': 'generate_response',
            'content': predictions
        })

        response_content = predictions.get('content', "Thinking...")
        if not is_ethical:
            response_content = f'Ethical considerations prevent this response. Violations: {violations}'
            
        if input_data.get("lang") and input_data.get("prompt"):
          creative_output = self.creativity.generate_creative_content(
              input_data["prompt"], input_data["lang"], creativity_level=0.8
          )
          response_content += f" Creative output: {creative_output}"
        
        if input_data.get("quantum_task"):
          quantum_result = self.quantum.run_quantum_algorithm(input_data["quantum_task"], input_data.get("quantum_data", {}))
          if quantum_result.get("status") == "success":
            response_content += f" Quantum result: {quantum_result['result']}"

        response = {
            'content': response_content,
            'emotional_state': emotional_context,
            'uncertainty': uncertainty,
            'style': style,
            'timestamp': datetime.now()
        }

        self.memory.add_memory({'type': 'response', 'content': response}, priority=0.7)

        end_time = time.time()
        processing_time = end_time - start_time
        self.resource_optimizer.optimize_resource_usage('processing_time', processing_time)

        if input_data.get('feedback'):
            self.adaptive_learning.process_feedback(input_data['feedback'])
            self.neural_network.adapt_architecture(input_data['feedback'])

        # Interacting with user feedback for continuous learning
        if input_data.get('user_feedback'):
            self.process_user_feedback(input_data['user_feedback'], multimodal_features)

        return response

    def process_user_feedback(self, feedback_text: str, multimodal_features: torch.Tensor):
        # Use multimodal features along with feedback text for training
        feedback_features = self.multimodal.process_multimodal_input(text_input=torch.tensor([feedback_text]))
        combined_features = torch.cat((multimodal_features, feedback_features), dim=1)

        # Train the response model with the combined features
        self.train_response_model_with_feedback(combined_features)

    def train_response_model_with_feedback(self, features: torch.Tensor):
        self.response_model.train()
        optimizer = torch.optim.Adam(self.response_model.parameters())
        criterion = nn.MSELoss()

        # Feedback training loop
        for _ in range(3):
            optimizer.zero_grad()
            outputs = self.response_model(features)
            target = self.derive_target_from_feedback(features)
            loss = criterion(outputs, target)
            loss.backward()
            optimizer.step()

    def derive_target_from_feedback(self, features: torch.Tensor) -> torch.Tensor:
        # Placeholder for deriving a target from feedback
        return features * 0.9

    def shutdown(self):
        print("Shutting down Enhanced Cognitive System...")
        if hasattr(self.quantum, 'shutdown') and callable(self.quantum.shutdown):
            self.quantum.shutdown()

    def register_event_listeners(self):
        self.context_manager.register_event_listener('context_added', self.on_context_added)
        self.knowledge_graph.register_event_listener('knowledge_added', self.on_knowledge_added)
        self.causal_engine.register_event_listener('relationship_added', self.on_relationship_added)
        self.causal_engine.register_event_listener('relationship_removed', self.on_relationship_removed)
        self.multimodal.register_event_listener('fusion_completed', self.on_fusion_completed)
        self.adaptive_learning.register_event_listener('learning_rate_adjusted', self.on_learning_rate_adjusted)
        self.emotional.register_event_listener('text_emotion_analyzed', self.on_emotion_analyzed)
        self.collaborative.register_event_listener('consensus_reached', self.on_consensus_reached)
        self.ethical.register_event_listener('principle_violated', self.on_principle_violated)
        self.resource_optimizer.        register_event_listener('resource_optimized', self.on_resource_optimized)
        self.predictive.register_event_listener('prediction_made', self.on_prediction_made)
        self.memory.register_event_listener('memory_added', self.on_memory_added)
        self.memory.register_event_listener('memory_removed', self.on_memory_removed)
        self.cognitive_style.register_event_listener('style_activated', self.on_style_activated)
        self.uncertainty.register_event_listener('uncertainty_quantified', self.on_uncertainty_quantified)
        self.goal_alignment.register_event_listener('goal_added', self.on_goal_added)
        self.goal_alignment.register_event_listener('safety_constraint_added', self.on_safety_constraint_added)
        self.creativity.register_event_listener('creative_content_generated', self.on_creative_content_generated)
        self.quantum.register_event_listener('quantum_algorithm_executed', self.on_quantum_algorithm_executed)
        self.neural_network.register_event_listener('layer_added', self.on_layer_added)
        self.neural_network.register_event_listener('layer_removed', self.on_layer_removed)
        self.real_world.register_event_listener('sensor_data_processed', self.on_sensor_data_processed)
        self.real_world.register_event_listener('action_executed', self.on_action_executed)
        self.architecture.register_event_listener('module_initialized', self.on_module_initialized)
        self.architecture.register_event_listener('module_initialization_error', self.on_module_initialization_error)

    # Event Handlers
    def on_context_added(self, event_data: Dict[str, Any]):
        print(f"Context added: {event_data['context_id']}")

    def on_knowledge_added(self, event_data: Dict[str, Any]):
        print(f"Knowledge added: {event_data['concept']}")

    def on_relationship_added(self, event_data: Dict[str, Any]):
        print(f"Causal relationship added between {event_data['cause']} and {event_data['effect']} with strength {event_data['strength']}")

    def on_relationship_removed(self, event_data: Dict[str, Any]):
        print(f"Causal relationship removed between {event_data['cause']} and {event_data['effect']}")

    def on_fusion_completed(self, event_data: Dict[str, Any]):
        print("Multimodal fusion completed.")

    def on_learning_rate_adjusted(self, event_data: Dict[str, Any]):
        print(f"Learning rate adjusted from {event_data['old_learning_rate']} to {event_data['new_learning_rate']}")

    def on_emotion_analyzed(self, event_data: Dict[str, Any]):
        print(f"Emotion analyzed: {event_data}")

    def on_consensus_reached(self, event_data: Dict[str, Any]):
        print(f"Consensus reached: {event_data['consensus_solution']}")

    def on_principle_violated(self, event_data: Dict[str, Any]):
        print(f"Ethical principle violated: {event_data['principle']} in action {event_data['action']}")

    def on_resource_optimized(self, event_data: Dict[str, Any]):
        print(f"Resource optimized: {event_data['type']} from {event_data['original_usage']} to {event_data['optimized_usage']}")

    def on_prediction_made(self, event_data: Dict[str, Any]):
        print(f"Prediction made by model {event_data['model']}: {event_data['prediction']}")

    def on_memory_added(self, event_data: Dict[str, Any]):
        print(f"Memory added: {event_data['type']} - {event_data['memory']}")

    def on_memory_removed(self, event_data: Dict[str, Any]):
        print(f"Memory removed: {event_data['type']} - {event_data['key']}")

    def on_style_activated(self, event_data: Dict[str, Any]):
        print(f"Cognitive style activated: {event_data['style_name']}")

    def on_uncertainty_quantified(self, event_data: Dict[str, Any]):
        print(f"Uncertainty quantified: {event_data['method']} - {event_data['result']}")

    def on_goal_added(self, event_data: Dict[str, Any]):
        print(f"Goal added: {event_data['goal_id']}")

    def on_safety_constraint_added(self, event_data: Dict[str, Any]):
        print(f"Safety constraint added: {event_data['constraint']} - {event_data['details']}")

    def on_creative_content_generated(self, event_data: Dict[str, Any]):
        print(f"Creative content generated for language {event_data['language']} with creativity level {event_data['creativity_level']}")

    def on_quantum_algorithm_executed(self, event_data: Dict[str, Any]):
        print(f"Quantum algorithm executed: {event_data['algorithm']} - Result: {event_data['result']}")

    def on_layer_added(self, event_data: Dict[str, Any]):
        print(f"Neural network layer added: {event_data['new_dim']}")

    def on_layer_removed(self, event_data: Dict[str, Any]):
        print("Neural network layer removed.")
    
    def on_layer_expanded(self, event_data: Dict[str, Any]):
      print(f"Neural network layer expanded to: {event_data['new_size']}")

    def on_sensor_data_processed(self, event_data: Dict[str, Any]):
        print(f"Sensor data processed: {event_data['sensor']} - Data: {event_data['data']}")

    def on_action_executed(self, event_data: Dict[str, Any]):
        print(f"Action executed on actuator {event_data['actuator']}: Success - {event_data['success']}")

    def on_module_initialized(self, event_data: Dict[str, Any]):
        print(f"Module initialized: {event_data['module_name']}")

    def on_module_initialization_error(self, event_data: Dict[str, Any]):
        print(f"Module initialization error: {event_data['module_name']} - Error: {event_data['error']}")

class ResponseModel(nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim):
        super(ResponseModel, self).__init__()
        self.layer1 = nn.Linear(input_dim, hidden_dim)
        self.relu = nn.ReLU()
        self.layer2 = nn.Linear(hidden_dim, output_dim)

    def forward(self, x):
        x = self.layer1(x)
        x = self.relu(x)
        x = self.layer2(x)
        return x

class ChatDataset(Dataset):
    def __init__(self, prompts, responses, multimodal_module):
        self.prompts = prompts
        self.responses = responses
        self.multimodal_module = multimodal_module

    def __len__(self):
        return len(self.prompts)

    def __getitem__(self, idx):
        prompt = self.prompts[idx]
        response = self.responses[idx]
        prompt_features = self.multimodal_module.process_multimodal_input(text_input=torch.tensor([prompt]))
        response_features = self.multimodal_module.process_multimodal_input(text_input=torch.tensor([response]))
        return {'input': prompt_features, 'target': response_features}
    
def sample_language_model(prompt):
    generated_texts = [
        f"Evolving narrative for: {prompt}",
        f"Dynamic story unfolding: {prompt}",
        f"Adaptive tale inspired by: {prompt}",
        f"Continuously developing story: {prompt}",
        f"Ever-changing narrative: {prompt}"
    ]
    return random.choice(generated_texts)

def sample_creativity_engine(base_content, creativity_level):
    enhanced_content = [
      f"Imaginatively enhanced ({creativity_level}): {base_content}",
      f"Creatively amplified ({creativity_level}): {base_content}",
      f"Innovatively transformed ({creativity_level}): {base_content}",
      f"Artistically reimagined ({creativity_level}): {base_content}",
      f"Uniquely adapted ({creativity_level}): {base_content}"
    ]
    return random.choice(enhanced_content)

class ModelInput(BaseModel):
    prompt: str
    max_new_tokens: int = 2048

app = FastAPI()

# Define model paths
base_model_path = "HuggingFaceTB/SmolLM2-135M-Instruct"
adapter_path = "khurrameycon/SmolLM-135M-Instruct-qa_pairs_converted.json-25epochs"

try:
    # Load the base model
    print("Loading base model...")
    model = AutoModelForCausalLM.from_pretrained(
        base_model_path,
        torch_dtype=torch.float16,
        trust_remote_code=True,
        device_map="auto"
    )

    # Load tokenizer
    print("Loading tokenizer...")
    tokenizer = AutoTokenizer.from_pretrained(base_model_path)

    # Download adapter weights
    print("Downloading adapter weights...")
    adapter_path_local = snapshot_download(repo_id=adapter_path)

    # Load the safetensors file
    print("Loading adapter weights...")
    adapter_file = f"{adapter_path_local}/adapter_model.safetensors"
    state_dict = load_file(adapter_file)

    # Load state dict into model
    print("Applying adapter weights...")
    model.load_state_dict(state_dict, strict=False)

    print("Model and adapter loaded successfully!")

except Exception as e:
    print(f"Error during model loading: {e}")
    raise

def generate_response(model, tokenizer, instruction, max_new_tokens=2048):
    """Generate a response from the model based on an instruction."""
    try:
        # Format input for the model
        inputs = tokenizer.encode(instruction, return_tensors="pt").to(model.device)
        
        # Generate response
        outputs = model.generate(
            inputs,
            max_new_tokens=max_new_tokens,
            temperature=0.7,
            top_p=0.9,
            do_sample=True,
        )

        # Decode and return the output
        response = tokenizer.decode(outputs[0], skip_special_tokens=True)
        return response

    except Exception as e:
        raise ValueError(f"Error generating response: {e}")

@app.post("/generate")
async def generate_text(input: ModelInput):
    try:
        response = generate_response(
            model=model,
            tokenizer=tokenizer,
            instruction=input.prompt,
            max_new_tokens=input.max_new_tokens
        )
        return {"generated_text": response}

    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/")
async def root():
    return {"message": "Welcome to the Model API!"}

def main():
    system = EnhancedCognitiveSystem()

    system.cognitive_style.register_style(ThinkingStyle.ANALYTICAL.value, {"logic": 0.9, "creativity": 0.2})
    system.cognitive_style.register_style(ThinkingStyle.CREATIVE.value, {"logic": 0.3, "creativity": 0.9})
    system.cognitive_style.register_style(ThinkingStyle.CRITICAL.value, {"logic": 0.8, "analysis": 0.9})
    system.cognitive_style.register_style(ThinkingStyle.SYSTEMATIC.value, {"organization": 0.9, "detail": 0.8})
    system.cognitive_style.register_style(ThinkingStyle.LATERAL.value, {"innovation": 0.9, "flexibility": 0.8})
    system.cognitive_style.register_style(ThinkingStyle.INTUITIVE.value, {"instinct": 0.9, "emotion": 0.7})
    system.cognitive_style.register_style(ThinkingStyle.COLLABORATIVE.value, {"teamwork": 0.9, "communication": 0.8})
    system.cognitive_style.register_style(ThinkingStyle.ETHICAL.value, {"morality": 0.9, "principles": 0.9})
    system.cognitive_style.register_style(ThinkingStyle.PRAGMATIC.value, {"practicality": 0.9, "efficiency": 0.8})
    system.cognitive_style.register_style(ThinkingStyle.INNOVATIVE.value, {"originality": 0.9, "invention": 0.8})
    system.cognitive_style.register_style(ThinkingStyle.REFLECTIVE.value, {"introspection": 0.9, "thoughtfulness": 0.8})
    system.cognitive_style.register_style(ThinkingStyle.EXPLORATORY.value, {"curiosity": 0.9, "discovery": 0.8})
    system.cognitive_style.register_style(ThinkingStyle.STRATEGIC.value, {"planning": 0.9, "foresight": 0.8})
    system.cognitive_style.register_style(ThinkingStyle.ABSTRACT.value, {"conceptualization": 0.9, "theory": 0.8})
    system.cognitive_style.register_style(ThinkingStyle.CONCRETE.value, {"tangibility": 0.9, "reality": 0.8})
    system.cognitive_style.register_style(ThinkingStyle.EMPATHETIC.value, {"understanding": 0.9, "compassion": 0.8})
    system.cognitive_style.register_style(ThinkingStyle.HOLISTIC.value, {"integration": 0.9, "synthesis": 0.8})
    system.cognitive_style.register_style(ThinkingStyle.DIVERGENT.value, {"breadth": 0.9, "exploration": 0.8})
    system.cognitive_style.register_style(ThinkingStyle.CONVERGENT.value, {"focus": 0.9, "solution-oriented": 0.8})
    system.cognitive_style.register_style(ThinkingStyle.ADAPTIVE.value, {"flexibility": 0.9, "responsiveness": 0.8})

    system.cognitive_style.activate_style(ThinkingStyle.ANALYTICAL.value)

    system.ethical.add_principle("non_maleficence", lambda x: "harm" not in x.get("content", "").lower())
    system.ethical.add_principle("beneficence", lambda x: "help" in x.get("content", "").lower())
    system.ethical.add_principle("user_autonomy", lambda x: x.get("user_approved", True))
    system.ethical.add_principle("avoid_deception", lambda x: not x.get("deceptive", False))
    system.ethical.add_principle("ensure_privacy", lambda x: not x.get("privacy_risk", False))
    system.ethical.add_principle("promote_fairness", lambda x: not x.get("unfair", False))

    system.goal_alignment.add_goal({"objective": "solve problems", "priority": 0.8, "user_approved": True})
    system.goal_alignment.add_goal({"objective": "learn and adapt", "priority": 0.9, "user_approved": True})
    system.goal_alignment.add_goal({"objective": "assist users", "priority": 0.85, "user_approved": True})
    system.goal_alignment.add_goal({"objective": "ensure safety", "priority": 0.95, "user_approved": True})
    system.goal_alignment.add_goal({"objective": "promote well-being", "priority": 0.8, "user_approved": True})
    system.goal_alignment.add_goal({"objective": "foster creativity", "priority": 0.7, "user_approved": True})
    system.goal_alignment.add_goal({"objective": "advance knowledge", "priority": 0.75, "user_approved": True})
    system.goal_alignment.add_goal({"objective": "improve efficiency", "priority": 0.6, "user_approved": True})

    system.creativity.add_language_model("english", sample_language_model)
    system.creativity.add_creativity_engine("english", sample_creativity_engine)

    system.quantum.initialize_quantum_circuit(num_qubits=8)
    system.quantum.add_gate("Hadamard", [0, 1, 2, 3, 4, 5, 6, 7])
    system.quantum.add_gate("CNOT", [0, 1])
    system.quantum.add_gate("CNOT", [2, 3])
    system.quantum.add_gate("CNOT", [4, 5])
    system.quantum.add_gate("CNOT", [6, 7])

    input_data = {
        'text': 'What is the meaning of life?',
        'text_features': torch.randn(1, 1024),
        'visual': torch.randn(1, 3, 64, 64),
        'audio': torch.randn(1, 128),
        'problem': {'type': 'optimization', 'parameters': [1, 2, 3]},
        'feedback': {'loss': 0.4, 'accuracy': 0.9},
        'lang': 'english',
        'prompt': 'Tell me a story',
        'quantum_task': "Shor's",
        'quantum_data': {"number": 15},
        'user_feedback': "That was helpful, thanks!"
    }

    response = system.process_input(input_data)
    print(f"Response: {response}")

    input_data_2 = {'text': 'How are you feeling?', 'user_feedback': "I have some feedback for you."}
    response_2 = system.process_input(input_data_2)
    print(f"Response 2: {response_2}")

    system.shutdown()

if __name__ == "__main__":
    main()