import os import base64 import requests import gradio as gr from huggingface_hub import InferenceClient from dataclasses import dataclass import pytesseract from PIL import Image @dataclass class ChatMessage: """Custom ChatMessage class since huggingface_hub doesn't provide one""" role: str content: str def to_dict(self): """Converts ChatMessage to a dictionary for JSON serialization.""" return {"role": self.role, "content": self.content} class XylariaChat: def __init__(self): # Securely load HuggingFace token self.hf_token = os.getenv("HF_TOKEN") if not self.hf_token: raise ValueError("HuggingFace token not found in environment variables") # Initialize the inference client with the Qwen model self.client = InferenceClient( model="Qwen/QwQ-32B-Preview", # Using the specified model api_key=self.hf_token ) # Image captioning API setup self.image_api_url = "https://api-inference.huggingface.co/models/Salesforce/blip-image-captioning-large" self.image_api_headers = {"Authorization": f"Bearer {self.hf_token}"} # Initialize conversation history and persistent memory self.conversation_history = [] self.persistent_memory = {} # System prompt with more detailed instructions self.system_prompt = """You are a helpful and harmless assistant. You are Xylaria developed by Sk Md Saad Amin. You should think step-by-step. You should respond to image questions""" def store_information(self, key, value): """Store important information in persistent memory""" self.persistent_memory[key] = value return f"Stored: {key} = {value}" def retrieve_information(self, key): """Retrieve information from persistent memory""" return self.persistent_memory.get(key, "No information found for this key.") def reset_conversation(self): """ Completely reset the conversation history, persistent memory, and clear API-side memory """ # Clear local memory self.conversation_history = [] self.persistent_memory.clear() # Reinitialize the client (not strictly necessary for the API, but can help with local state) try: self.client = InferenceClient( model="Qwen/QwQ-32B-Preview", api_key=self.hf_token ) except Exception as e: print(f"Error resetting API client: {e}") return None # To clear the chatbot interface def caption_image(self, image): """ Caption an uploaded image using Hugging Face API Args: image (str): Base64 encoded image or file path Returns: str: Image caption or error message """ try: # If image is a file path, read and encode if isinstance(image, str) and os.path.isfile(image): with open(image, "rb") as f: data = f.read() # If image is already base64 encoded elif isinstance(image, str): # Remove data URI prefix if present if image.startswith('data:image'): image = image.split(',')[1] data = base64.b64decode(image) # If image is a file-like object (unlikely with Gradio, but good to have) else: data = image.read() # Send request to Hugging Face API response = requests.post( self.image_api_url, headers=self.image_api_headers, data=data ) # Check response if response.status_code == 200: caption = response.json()[0].get('generated_text', 'No caption generated') return caption else: return f"Error captioning image: {response.status_code} - {response.text}" except Exception as e: return f"Error processing image: {str(e)}" def perform_math_ocr(self, image_path): """ Perform OCR on an image and return the extracted text. Args: image_path (str): Path to the image file. Returns: str: Extracted text from the image, or an error message. """ try: # Open the image using Pillow library img = Image.open(image_path) # Use Tesseract to do OCR on the image text = pytesseract.image_to_string(img) # Remove leading/trailing whitespace and return return text.strip() except Exception as e: return f"Error during Math OCR: {e}" def get_response(self, user_input, image=None): """ Generate a response using chat completions with improved error handling Args: user_input (str): User's message image (optional): Uploaded image Returns: Stream of chat completions or error message """ try: # Prepare messages with conversation context and persistent memory messages = [] # Add system prompt as first message messages.append(ChatMessage( role="system", content=self.system_prompt ).to_dict()) # Add persistent memory context if available if self.persistent_memory: memory_context = "Remembered Information:\n" + "\n".join( [f"{k}: {v}" for k, v in self.persistent_memory.items()] ) messages.append(ChatMessage( role="system", content=memory_context ).to_dict()) # Convert existing conversation history to ChatMessage objects and then to dictionaries for msg in self.conversation_history: messages.append(ChatMessage( role=msg['role'], content=msg['content'] ).to_dict()) # Process image if uploaded if image: image_caption = self.caption_image(image) user_input = f"Image description: {image_caption}\n\nUser's message: {user_input}" # Add user input messages.append(ChatMessage( role="user", content=user_input ).to_dict()) # Calculate available tokens input_tokens = sum(len(msg['content'].split()) for msg in messages) max_new_tokens = 16384 - input_tokens - 50 # Reserve some tokens for safety # Limit max_new_tokens to prevent exceeding the total limit max_new_tokens = min(max_new_tokens, 10020) # Generate response with streaming stream = self.client.chat_completion( messages=messages, model="Qwen/QwQ-32B-Preview", temperature=0.7, max_tokens=max_new_tokens, top_p=0.9, stream=True ) return stream except Exception as e: print(f"Detailed error in get_response: {e}") return f"Error generating response: {str(e)}" def messages_to_prompt(self, messages): """ Convert a list of ChatMessage dictionaries to a single prompt string. This is a simple implementation and you might need to adjust it based on the specific requirements of the model you are using. """ prompt = "" for msg in messages: if msg["role"] == "system": prompt += f"<|system|>\n{msg['content']}<|end|>\n" elif msg["role"] == "user": prompt += f"<|user|>\n{msg['content']}<|end|>\n" elif msg["role"] == "assistant": prompt += f"<|assistant|>\n{msg['content']}<|end|>\n" prompt += "<|assistant|>\n" # Start of assistant's turn return prompt def create_interface(self): def streaming_response(message, chat_history, image_filepath, math_ocr_image_path): ocr_text = "" if math_ocr_image_path: ocr_text = self.perform_math_ocr(math_ocr_image_path) if ocr_text.startswith("Error"): # Handle OCR error updated_history = chat_history + [[message, ocr_text]] yield "", updated_history, None, None return else: message = f"Math OCR Result: {ocr_text}\n\nUser's message: {message}" # Check if an image was actually uploaded if image_filepath: response_stream = self.get_response(message, image_filepath) else: response_stream = self.get_response(message) # Handle errors in get_response if isinstance(response_stream, str): # Return immediately with the error message updated_history = chat_history + [[message, response_stream]] yield "", updated_history, None, None return # Prepare for streaming response full_response = "" updated_history = chat_history + [[message, ""]] # Streaming output try: for chunk in response_stream: if chunk.choices and chunk.choices[0].delta and chunk.choices[0].delta.content: chunk_content = chunk.choices[0].delta.content full_response += chunk_content # Update the last message in chat history with partial response updated_history[-1][1] = full_response yield "", updated_history, None, None except Exception as e: print(f"Streaming error: {e}") # Display error in the chat interface updated_history[-1][1] = f"Error during response: {e}" yield "", updated_history, None, None return # Update conversation history self.conversation_history.append( {"role": "user", "content": message} ) self.conversation_history.append( {"role": "assistant", "content": full_response} ) # Limit conversation history if len(self.conversation_history) > 10: self.conversation_history = self.conversation_history[-10:] # Custom CSS for Inter font and improved styling custom_css = """ @import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap'); body, .gradio-container { font-family: 'Inter', sans-serif !important; } .chatbot-container .message { font-family: 'Inter', sans-serif !important; } .gradio-container input, .gradio-container textarea, .gradio-container button { font-family: 'Inter', sans-serif !important; } /* Image Upload Styling */ .image-container { border: 1px solid #ccc; border-radius: 8px; padding: 10px; margin-bottom: 10px; display: flex; flex-direction: column; align-items: center; gap: 10px; background-color: #f8f8f8; } .image-preview { max-width: 200px; max-height: 200px; border-radius: 8px; } .image-buttons { display: flex; gap: 10px; } .image-buttons button { padding: 8px 15px; border-radius: 5px; background-color: #4CAF50; color: white; border: none; cursor: pointer; } .image-buttons button:hover { background-color: #367c39; } """ with gr.Blocks(theme='soft', css=custom_css) as demo: # Chat interface with improved styling with gr.Column(): chatbot = gr.Chatbot( label="Xylaria 1.5 Senoa (EXPERIMENTAL)", height=500, show_copy_button=True, ) # Enhanced Image Upload Section with gr.Accordion("Image Input", open=False): with gr.Column() as image_container: # Use a Column for the image container img = gr.Image( sources=["upload", "webcam"], type="filepath", label="", # Remove label as it's redundant elem_classes="image-preview", # Add a class for styling ) with gr.Row(): clear_image_btn = gr.Button("Clear Image") with gr.Accordion("Math Input", open=False): with gr.Column(): math_ocr_img = gr.Image( sources=["upload", "webcam"], type="filepath", label="Upload Image for math", elem_classes="image-preview" ) with gr.Row(): clear_math_ocr_btn = gr.Button("Clear Math Image") # Input row with improved layout with gr.Row(): with gr.Column(scale=4): txt = gr.Textbox( show_label=False, placeholder="Type your message...", container=False ) btn = gr.Button("Send", scale=1) # Clear history and memory buttons with gr.Row(): clear = gr.Button("Clear Conversation") clear_memory = gr.Button("Clear Memory") # Clear image functionality clear_image_btn.click( fn=lambda: None, inputs=None, outputs=[img], queue=False ) # Clear Math OCR image functionality clear_math_ocr_btn.click( fn=lambda: None, inputs=None, outputs=[math_ocr_img], queue=False ) # Submit functionality with streaming and image support btn.click( fn=streaming_response, inputs=[txt, chatbot, img, math_ocr_img], outputs=[txt, chatbot, img, math_ocr_img] ) txt.submit( fn=streaming_response, inputs=[txt, chatbot, img, math_ocr_img], outputs=[txt, chatbot, img, math_ocr_img] ) # Clear conversation history clear.click( fn=lambda: None, inputs=None, outputs=[chatbot], queue=False ) # Clear persistent memory and reset conversation clear_memory.click( fn=self.reset_conversation, inputs=None, outputs=[chatbot], queue=False ) # Ensure memory is cleared when the interface is closed demo.load(self.reset_conversation, None, None) return demo # Launch the interface def main(): chat = XylariaChat() interface = chat.create_interface() interface.launch( share=True, # Optional: create a public link debug=True # Show detailed errors ) if __name__ == "__main__": main()