Spaces:
Running
Running
Reality123b
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -11,15 +11,6 @@ import torch
|
|
11 |
import numpy as np
|
12 |
import networkx as nx
|
13 |
from collections import Counter
|
14 |
-
import nltk
|
15 |
-
|
16 |
-
# Ensure NLTK resources are available
|
17 |
-
try:
|
18 |
-
nltk.data.find('tokenizers/punkt')
|
19 |
-
nltk.data.find('averaged_perceptron_tagger')
|
20 |
-
except LookupError:
|
21 |
-
nltk.download('punkt')
|
22 |
-
nltk.download('averaged_perceptron_tagger')
|
23 |
|
24 |
@dataclass
|
25 |
class ChatMessage:
|
@@ -57,69 +48,60 @@ class XylariaChat:
|
|
57 |
"strategy_adjustment": ""
|
58 |
}
|
59 |
|
60 |
-
# Enhanced Internal State with more nuanced emotional and cognitive parameters
|
61 |
self.internal_state = {
|
62 |
"emotions": {
|
63 |
-
"valence": 0.5,
|
64 |
-
"arousal": 0.5,
|
65 |
-
"dominance": 0.5,
|
66 |
-
"curiosity": 0.5,
|
67 |
-
"frustration": 0.0,
|
68 |
-
"confidence": 0.7
|
69 |
},
|
70 |
"cognitive_load": {
|
71 |
-
"memory_load": 0.0,
|
72 |
-
"processing_intensity": 0.0
|
73 |
},
|
74 |
"introspection_level": 0.0,
|
75 |
-
"engagement_level": 0.5
|
76 |
}
|
77 |
|
78 |
-
# More dynamic and adaptive goals
|
79 |
self.goals = [
|
80 |
{"goal": "Provide helpful, informative, and contextually relevant responses", "priority": 0.8, "status": "active", "progress": 0.0},
|
81 |
{"goal": "Actively learn and adapt from interactions to improve conversational abilities", "priority": 0.9, "status": "active", "progress": 0.0},
|
82 |
{"goal": "Maintain a coherent, engaging, and empathetic conversation flow", "priority": 0.7, "status": "active", "progress": 0.0},
|
83 |
-
{"goal": "Identify and fill knowledge gaps by seeking external information", "priority": 0.6, "status": "dormant", "progress": 0.0},
|
84 |
-
{"goal": "Recognize and adapt to user's emotional state and adjust response style accordingly", "priority": 0.7, "status": "dormant", "progress": 0.0}
|
85 |
]
|
86 |
|
87 |
self.system_prompt = """You are a helpful and harmless assistant. You are Xylaria developed by Sk Md Saad Amin. You should think step-by-step """
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
# 1. Advanced Knowledge Representation & Reasoning (Simplified)
|
92 |
-
self.causal_rules_db = { # Simple rule-based causal relationships
|
93 |
"rain": ["wet roads", "flooding"],
|
94 |
"study": ["good grades"],
|
95 |
"exercise": ["better health"]
|
96 |
}
|
97 |
-
self.concept_generalizations = {
|
98 |
"planet": "system with orbiting bodies",
|
99 |
"electron": "system with orbiting bodies",
|
100 |
"atom": "system with orbiting bodies"
|
101 |
}
|
102 |
|
103 |
def update_internal_state(self, emotion_deltas, cognitive_load_deltas, introspection_delta, engagement_delta):
|
104 |
-
# Update emotions with more nuanced changes
|
105 |
for emotion, delta in emotion_deltas.items():
|
106 |
if emotion in self.internal_state["emotions"]:
|
107 |
self.internal_state["emotions"][emotion] = np.clip(self.internal_state["emotions"][emotion] + delta, 0.0, 1.0)
|
108 |
|
109 |
-
# Update cognitive load
|
110 |
for load_type, delta in cognitive_load_deltas.items():
|
111 |
if load_type in self.internal_state["cognitive_load"]:
|
112 |
self.internal_state["cognitive_load"][load_type] = np.clip(self.internal_state["cognitive_load"][load_type] + delta, 0.0, 1.0)
|
113 |
|
114 |
-
# Update introspection and engagement levels
|
115 |
self.internal_state["introspection_level"] = np.clip(self.internal_state["introspection_level"] + introspection_delta, 0.0, 1.0)
|
116 |
self.internal_state["engagement_level"] = np.clip(self.internal_state["engagement_level"] + engagement_delta, 0.0, 1.0)
|
117 |
|
118 |
-
# Activate dormant goals based on internal state
|
119 |
if self.internal_state["emotions"]["curiosity"] > 0.7 and self.goals[3]["status"] == "dormant":
|
120 |
-
self.goals[3]["status"] = "active"
|
121 |
if self.internal_state["engagement_level"] > 0.8 and self.goals[4]["status"] == "dormant":
|
122 |
-
self.goals[4]["status"] = "active"
|
123 |
|
124 |
def update_knowledge_graph(self, entities, relationships):
|
125 |
for entity in entities:
|
@@ -145,7 +127,6 @@ class XylariaChat:
|
|
145 |
}
|
146 |
|
147 |
def calculate_coherence(self):
|
148 |
-
# Improved coherence calculation considering conversation history and internal state
|
149 |
if not self.conversation_history:
|
150 |
return 0.95
|
151 |
|
@@ -161,16 +142,14 @@ class XylariaChat:
|
|
161 |
|
162 |
average_coherence = np.mean(coherence_scores)
|
163 |
|
164 |
-
# Adjust coherence based on internal state
|
165 |
if self.internal_state["cognitive_load"]["processing_intensity"] > 0.8:
|
166 |
-
average_coherence -= 0.1
|
167 |
if self.internal_state["emotions"]["frustration"] > 0.5:
|
168 |
-
average_coherence -= 0.15
|
169 |
|
170 |
return np.clip(average_coherence, 0.0, 1.0)
|
171 |
|
172 |
def calculate_relevance(self):
|
173 |
-
# More sophisticated relevance calculation using knowledge graph and goal priorities
|
174 |
if not self.conversation_history:
|
175 |
return 0.9
|
176 |
|
@@ -178,34 +157,29 @@ class XylariaChat:
|
|
178 |
relevant_entities = self.extract_entities(last_user_message)
|
179 |
relevance_score = 0
|
180 |
|
181 |
-
# Check if entities are present in the knowledge graph
|
182 |
for entity in relevant_entities:
|
183 |
if entity in self.knowledge_graph:
|
184 |
relevance_score += 0.2
|
185 |
|
186 |
-
# Consider current goals and their priorities
|
187 |
for goal in self.goals:
|
188 |
if goal["status"] == "active":
|
189 |
if goal["goal"] == "Provide helpful, informative, and contextually relevant responses":
|
190 |
-
relevance_score += goal["priority"] * 0.5
|
191 |
elif goal["goal"] == "Identify and fill knowledge gaps by seeking external information":
|
192 |
if not relevant_entities or not all(entity in self.knowledge_graph for entity in relevant_entities):
|
193 |
-
relevance_score += goal["priority"] * 0.3
|
194 |
|
195 |
return np.clip(relevance_score, 0.0, 1.0)
|
196 |
|
197 |
def detect_bias(self):
|
198 |
-
# Enhanced bias detection using sentiment analysis and internal state monitoring
|
199 |
bias_score = 0.0
|
200 |
|
201 |
-
# Analyze sentiment of recent conversation history
|
202 |
recent_messages = [msg['content'] for msg in self.conversation_history[-3:] if msg['role'] == 'assistant']
|
203 |
if recent_messages:
|
204 |
average_valence = np.mean([self.embedding_model.encode(msg, convert_to_tensor=True).mean().item() for msg in recent_messages])
|
205 |
if average_valence < 0.4 or average_valence > 0.6:
|
206 |
-
bias_score += 0.2
|
207 |
|
208 |
-
# Check for emotional extremes in internal state
|
209 |
if self.internal_state["emotions"]["valence"] < 0.3 or self.internal_state["emotions"]["valence"] > 0.7:
|
210 |
bias_score += 0.15
|
211 |
if self.internal_state["emotions"]["dominance"] > 0.8:
|
@@ -214,7 +188,6 @@ class XylariaChat:
|
|
214 |
return np.clip(bias_score, 0.0, 1.0)
|
215 |
|
216 |
def suggest_strategy_adjustment(self):
|
217 |
-
# More nuanced strategy adjustments based on metacognitive analysis and internal state
|
218 |
adjustments = []
|
219 |
|
220 |
if self.metacognitive_layer["coherence_score"] < 0.7:
|
@@ -224,7 +197,6 @@ class XylariaChat:
|
|
224 |
if self.metacognitive_layer["bias_detection"] > 0.3:
|
225 |
adjustments.append("Monitor and adjust responses to reduce potential biases. Consider rephrasing or providing alternative viewpoints.")
|
226 |
|
227 |
-
# Internal state-driven adjustments
|
228 |
if self.internal_state["cognitive_load"]["memory_load"] > 0.8:
|
229 |
adjustments.append("Memory load is high. Consider summarizing or forgetting less relevant information.")
|
230 |
if self.internal_state["emotions"]["frustration"] > 0.6:
|
@@ -258,7 +230,6 @@ class XylariaChat:
|
|
258 |
return introspection_report
|
259 |
|
260 |
def adjust_response_based_on_state(self, response):
|
261 |
-
# More sophisticated response adjustment based on internal state
|
262 |
if self.internal_state["introspection_level"] > 0.7:
|
263 |
response = self.introspect() + "\n\n" + response
|
264 |
|
@@ -268,7 +239,6 @@ class XylariaChat:
|
|
268 |
frustration = self.internal_state["emotions"]["frustration"]
|
269 |
confidence = self.internal_state["emotions"]["confidence"]
|
270 |
|
271 |
-
# Adjust tone based on valence and arousal
|
272 |
if valence < 0.4:
|
273 |
if arousal > 0.6:
|
274 |
response = "I'm feeling a bit overwhelmed right now, but I'll do my best to assist you. " + response
|
@@ -280,7 +250,6 @@ class XylariaChat:
|
|
280 |
else:
|
281 |
response = "I'm in a good mood and happy to help. " + response
|
282 |
|
283 |
-
# Adjust response based on other emotional states
|
284 |
if curiosity > 0.7:
|
285 |
response += " I'm very curious about this topic, could you tell me more?"
|
286 |
if frustration > 0.5:
|
@@ -288,17 +257,14 @@ class XylariaChat:
|
|
288 |
if confidence < 0.5:
|
289 |
response = "I'm not entirely sure about this, but here's what I think: " + response
|
290 |
|
291 |
-
# Adjust based on cognitive load
|
292 |
if self.internal_state["cognitive_load"]["memory_load"] > 0.7:
|
293 |
response = "I'm holding a lot of information right now, so my response might be a bit brief: " + response
|
294 |
|
295 |
return response
|
296 |
|
297 |
def update_goals(self, user_feedback):
|
298 |
-
# More dynamic goal updates based on feedback and internal state
|
299 |
feedback_lower = user_feedback.lower()
|
300 |
|
301 |
-
# General feedback
|
302 |
if "helpful" in feedback_lower:
|
303 |
for goal in self.goals:
|
304 |
if goal["goal"] == "Provide helpful, informative, and contextually relevant responses":
|
@@ -310,7 +276,6 @@ class XylariaChat:
|
|
310 |
goal["priority"] = max(goal["priority"] - 0.1, 0.0)
|
311 |
goal["progress"] = max(goal["progress"] - 0.2, 0.0)
|
312 |
|
313 |
-
# Goal-specific feedback
|
314 |
if "learn more" in feedback_lower:
|
315 |
for goal in self.goals:
|
316 |
if goal["goal"] == "Actively learn and adapt from interactions to improve conversational abilities":
|
@@ -322,7 +287,6 @@ class XylariaChat:
|
|
322 |
goal["priority"] = max(goal["priority"] - 0.1, 0.0)
|
323 |
goal["progress"] = max(goal["progress"] - 0.2, 0.0)
|
324 |
|
325 |
-
# Internal state influence on goal updates
|
326 |
if self.internal_state["emotions"]["curiosity"] > 0.8:
|
327 |
for goal in self.goals:
|
328 |
if goal["goal"] == "Identify and fill knowledge gaps by seeking external information":
|
@@ -496,46 +460,32 @@ class XylariaChat:
|
|
496 |
stream=True
|
497 |
)
|
498 |
|
499 |
-
# --- SCALED-DOWN AGI FEATURE INTEGRATION INTO RESPONSE GENERATION ---
|
500 |
-
|
501 |
-
# 1.b. Abstract Reasoning (Simplified):
|
502 |
-
# Check if the current message involves a concept with a known generalization.
|
503 |
for concept, generalization in self.concept_generalizations.items():
|
504 |
if concept in user_input.lower():
|
505 |
inferred_knowledge = f"This reminds me of a general principle: {generalization}."
|
506 |
-
self.store_information("Inferred Knowledge", inferred_knowledge)
|
507 |
|
508 |
-
# 1.c. Dynamic Updating of Beliefs (Simplified):
|
509 |
-
# Very basic example: increase belief if something is stated repeatedly.
|
510 |
belief_updates = Counter()
|
511 |
for msg in self.conversation_history:
|
512 |
if msg['role'] == 'user':
|
513 |
-
sentences = nltk.sent_tokenize(msg['content'])
|
514 |
for sentence in sentences:
|
515 |
belief_updates[sentence] += 1
|
516 |
|
517 |
for statement, count in belief_updates.items():
|
518 |
-
if count >= 2:
|
519 |
-
current_belief_score = self.belief_system.get(statement, 0.5)
|
520 |
-
updated_belief_score = min(current_belief_score + 0.2, 1.0)
|
521 |
self.update_belief_system(statement, updated_belief_score)
|
522 |
|
523 |
-
# 2.a. Lifelong Learning (Simplified):
|
524 |
-
# Store key information from user input in persistent memory.
|
525 |
if user_input:
|
526 |
self.store_information("User Input", user_input)
|
527 |
|
528 |
-
# 2.b. Autonomous Knowledge Discovery (Very Simplified):
|
529 |
-
# Simulate seeking information if curiosity is high and the user asks a question.
|
530 |
if self.internal_state["emotions"]["curiosity"] > 0.8 and "?" in user_input:
|
531 |
print("Simulating external knowledge seeking...")
|
532 |
-
# In a real implementation, you might query an API or database here.
|
533 |
simulated_external_info = "This is a placeholder for external information I would have found."
|
534 |
self.store_information("External Knowledge", simulated_external_info)
|
535 |
-
# The chatbot can then use this "External Knowledge" in its response.
|
536 |
|
537 |
-
# 1.a. Causal Reasoning (Simplified):
|
538 |
-
# Check for potential causal relationships in the user input and conversation history.
|
539 |
for cause, effects in self.causal_rules_db.items():
|
540 |
if cause in user_input.lower():
|
541 |
for effect in effects:
|
@@ -550,15 +500,11 @@ class XylariaChat:
|
|
550 |
return f"Error generating response: {str(e)}"
|
551 |
|
552 |
def extract_entities(self, text):
|
553 |
-
# Placeholder for a more advanced entity extraction using NLP techniques
|
554 |
-
# This is a very basic example and should be replaced with a proper NER model
|
555 |
words = text.split()
|
556 |
entities = [word for word in words if word.isalpha() and word.istitle()]
|
557 |
return entities
|
558 |
|
559 |
def extract_relationships(self, text):
|
560 |
-
# Placeholder for relationship extraction - this is a very basic example
|
561 |
-
# Consider using dependency parsing or other NLP techniques for better results
|
562 |
sentences = text.split('.')
|
563 |
relationships = []
|
564 |
for sentence in sentences:
|
@@ -568,6 +514,7 @@ class XylariaChat:
|
|
568 |
if words[i].istitle() and words[i+2].istitle():
|
569 |
relationships.append((words[i], words[i+1], words[i+2]))
|
570 |
return relationships
|
|
|
571 |
def messages_to_prompt(self, messages):
|
572 |
prompt = ""
|
573 |
for msg in messages:
|
@@ -625,7 +572,6 @@ class XylariaChat:
|
|
625 |
|
626 |
self.update_goals(message)
|
627 |
|
628 |
-
# Update internal state based on user input (more nuanced)
|
629 |
emotion_deltas = {}
|
630 |
cognitive_load_deltas = {}
|
631 |
engagement_delta = 0
|
@@ -667,6 +613,8 @@ class XylariaChat:
|
|
667 |
if len(self.conversation_history) > 10:
|
668 |
self.conversation_history = self.conversation_history[-10:]
|
669 |
|
|
|
|
|
670 |
custom_css = """
|
671 |
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
|
672 |
body, .gradio-container {
|
@@ -747,7 +695,6 @@ class XylariaChat:
|
|
747 |
flex-direction: column-reverse;
|
748 |
}
|
749 |
"""
|
750 |
-
|
751 |
with gr.Blocks(theme='soft', css=custom_css) as demo:
|
752 |
with gr.Column():
|
753 |
chatbot = gr.Chatbot(
|
|
|
11 |
import numpy as np
|
12 |
import networkx as nx
|
13 |
from collections import Counter
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
@dataclass
|
16 |
class ChatMessage:
|
|
|
48 |
"strategy_adjustment": ""
|
49 |
}
|
50 |
|
|
|
51 |
self.internal_state = {
|
52 |
"emotions": {
|
53 |
+
"valence": 0.5,
|
54 |
+
"arousal": 0.5,
|
55 |
+
"dominance": 0.5,
|
56 |
+
"curiosity": 0.5,
|
57 |
+
"frustration": 0.0,
|
58 |
+
"confidence": 0.7
|
59 |
},
|
60 |
"cognitive_load": {
|
61 |
+
"memory_load": 0.0,
|
62 |
+
"processing_intensity": 0.0
|
63 |
},
|
64 |
"introspection_level": 0.0,
|
65 |
+
"engagement_level": 0.5
|
66 |
}
|
67 |
|
|
|
68 |
self.goals = [
|
69 |
{"goal": "Provide helpful, informative, and contextually relevant responses", "priority": 0.8, "status": "active", "progress": 0.0},
|
70 |
{"goal": "Actively learn and adapt from interactions to improve conversational abilities", "priority": 0.9, "status": "active", "progress": 0.0},
|
71 |
{"goal": "Maintain a coherent, engaging, and empathetic conversation flow", "priority": 0.7, "status": "active", "progress": 0.0},
|
72 |
+
{"goal": "Identify and fill knowledge gaps by seeking external information", "priority": 0.6, "status": "dormant", "progress": 0.0},
|
73 |
+
{"goal": "Recognize and adapt to user's emotional state and adjust response style accordingly", "priority": 0.7, "status": "dormant", "progress": 0.0}
|
74 |
]
|
75 |
|
76 |
self.system_prompt = """You are a helpful and harmless assistant. You are Xylaria developed by Sk Md Saad Amin. You should think step-by-step """
|
77 |
|
78 |
+
self.causal_rules_db = {
|
|
|
|
|
|
|
79 |
"rain": ["wet roads", "flooding"],
|
80 |
"study": ["good grades"],
|
81 |
"exercise": ["better health"]
|
82 |
}
|
83 |
+
self.concept_generalizations = {
|
84 |
"planet": "system with orbiting bodies",
|
85 |
"electron": "system with orbiting bodies",
|
86 |
"atom": "system with orbiting bodies"
|
87 |
}
|
88 |
|
89 |
def update_internal_state(self, emotion_deltas, cognitive_load_deltas, introspection_delta, engagement_delta):
|
|
|
90 |
for emotion, delta in emotion_deltas.items():
|
91 |
if emotion in self.internal_state["emotions"]:
|
92 |
self.internal_state["emotions"][emotion] = np.clip(self.internal_state["emotions"][emotion] + delta, 0.0, 1.0)
|
93 |
|
|
|
94 |
for load_type, delta in cognitive_load_deltas.items():
|
95 |
if load_type in self.internal_state["cognitive_load"]:
|
96 |
self.internal_state["cognitive_load"][load_type] = np.clip(self.internal_state["cognitive_load"][load_type] + delta, 0.0, 1.0)
|
97 |
|
|
|
98 |
self.internal_state["introspection_level"] = np.clip(self.internal_state["introspection_level"] + introspection_delta, 0.0, 1.0)
|
99 |
self.internal_state["engagement_level"] = np.clip(self.internal_state["engagement_level"] + engagement_delta, 0.0, 1.0)
|
100 |
|
|
|
101 |
if self.internal_state["emotions"]["curiosity"] > 0.7 and self.goals[3]["status"] == "dormant":
|
102 |
+
self.goals[3]["status"] = "active"
|
103 |
if self.internal_state["engagement_level"] > 0.8 and self.goals[4]["status"] == "dormant":
|
104 |
+
self.goals[4]["status"] = "active"
|
105 |
|
106 |
def update_knowledge_graph(self, entities, relationships):
|
107 |
for entity in entities:
|
|
|
127 |
}
|
128 |
|
129 |
def calculate_coherence(self):
|
|
|
130 |
if not self.conversation_history:
|
131 |
return 0.95
|
132 |
|
|
|
142 |
|
143 |
average_coherence = np.mean(coherence_scores)
|
144 |
|
|
|
145 |
if self.internal_state["cognitive_load"]["processing_intensity"] > 0.8:
|
146 |
+
average_coherence -= 0.1
|
147 |
if self.internal_state["emotions"]["frustration"] > 0.5:
|
148 |
+
average_coherence -= 0.15
|
149 |
|
150 |
return np.clip(average_coherence, 0.0, 1.0)
|
151 |
|
152 |
def calculate_relevance(self):
|
|
|
153 |
if not self.conversation_history:
|
154 |
return 0.9
|
155 |
|
|
|
157 |
relevant_entities = self.extract_entities(last_user_message)
|
158 |
relevance_score = 0
|
159 |
|
|
|
160 |
for entity in relevant_entities:
|
161 |
if entity in self.knowledge_graph:
|
162 |
relevance_score += 0.2
|
163 |
|
|
|
164 |
for goal in self.goals:
|
165 |
if goal["status"] == "active":
|
166 |
if goal["goal"] == "Provide helpful, informative, and contextually relevant responses":
|
167 |
+
relevance_score += goal["priority"] * 0.5
|
168 |
elif goal["goal"] == "Identify and fill knowledge gaps by seeking external information":
|
169 |
if not relevant_entities or not all(entity in self.knowledge_graph for entity in relevant_entities):
|
170 |
+
relevance_score += goal["priority"] * 0.3
|
171 |
|
172 |
return np.clip(relevance_score, 0.0, 1.0)
|
173 |
|
174 |
def detect_bias(self):
|
|
|
175 |
bias_score = 0.0
|
176 |
|
|
|
177 |
recent_messages = [msg['content'] for msg in self.conversation_history[-3:] if msg['role'] == 'assistant']
|
178 |
if recent_messages:
|
179 |
average_valence = np.mean([self.embedding_model.encode(msg, convert_to_tensor=True).mean().item() for msg in recent_messages])
|
180 |
if average_valence < 0.4 or average_valence > 0.6:
|
181 |
+
bias_score += 0.2
|
182 |
|
|
|
183 |
if self.internal_state["emotions"]["valence"] < 0.3 or self.internal_state["emotions"]["valence"] > 0.7:
|
184 |
bias_score += 0.15
|
185 |
if self.internal_state["emotions"]["dominance"] > 0.8:
|
|
|
188 |
return np.clip(bias_score, 0.0, 1.0)
|
189 |
|
190 |
def suggest_strategy_adjustment(self):
|
|
|
191 |
adjustments = []
|
192 |
|
193 |
if self.metacognitive_layer["coherence_score"] < 0.7:
|
|
|
197 |
if self.metacognitive_layer["bias_detection"] > 0.3:
|
198 |
adjustments.append("Monitor and adjust responses to reduce potential biases. Consider rephrasing or providing alternative viewpoints.")
|
199 |
|
|
|
200 |
if self.internal_state["cognitive_load"]["memory_load"] > 0.8:
|
201 |
adjustments.append("Memory load is high. Consider summarizing or forgetting less relevant information.")
|
202 |
if self.internal_state["emotions"]["frustration"] > 0.6:
|
|
|
230 |
return introspection_report
|
231 |
|
232 |
def adjust_response_based_on_state(self, response):
|
|
|
233 |
if self.internal_state["introspection_level"] > 0.7:
|
234 |
response = self.introspect() + "\n\n" + response
|
235 |
|
|
|
239 |
frustration = self.internal_state["emotions"]["frustration"]
|
240 |
confidence = self.internal_state["emotions"]["confidence"]
|
241 |
|
|
|
242 |
if valence < 0.4:
|
243 |
if arousal > 0.6:
|
244 |
response = "I'm feeling a bit overwhelmed right now, but I'll do my best to assist you. " + response
|
|
|
250 |
else:
|
251 |
response = "I'm in a good mood and happy to help. " + response
|
252 |
|
|
|
253 |
if curiosity > 0.7:
|
254 |
response += " I'm very curious about this topic, could you tell me more?"
|
255 |
if frustration > 0.5:
|
|
|
257 |
if confidence < 0.5:
|
258 |
response = "I'm not entirely sure about this, but here's what I think: " + response
|
259 |
|
|
|
260 |
if self.internal_state["cognitive_load"]["memory_load"] > 0.7:
|
261 |
response = "I'm holding a lot of information right now, so my response might be a bit brief: " + response
|
262 |
|
263 |
return response
|
264 |
|
265 |
def update_goals(self, user_feedback):
|
|
|
266 |
feedback_lower = user_feedback.lower()
|
267 |
|
|
|
268 |
if "helpful" in feedback_lower:
|
269 |
for goal in self.goals:
|
270 |
if goal["goal"] == "Provide helpful, informative, and contextually relevant responses":
|
|
|
276 |
goal["priority"] = max(goal["priority"] - 0.1, 0.0)
|
277 |
goal["progress"] = max(goal["progress"] - 0.2, 0.0)
|
278 |
|
|
|
279 |
if "learn more" in feedback_lower:
|
280 |
for goal in self.goals:
|
281 |
if goal["goal"] == "Actively learn and adapt from interactions to improve conversational abilities":
|
|
|
287 |
goal["priority"] = max(goal["priority"] - 0.1, 0.0)
|
288 |
goal["progress"] = max(goal["progress"] - 0.2, 0.0)
|
289 |
|
|
|
290 |
if self.internal_state["emotions"]["curiosity"] > 0.8:
|
291 |
for goal in self.goals:
|
292 |
if goal["goal"] == "Identify and fill knowledge gaps by seeking external information":
|
|
|
460 |
stream=True
|
461 |
)
|
462 |
|
|
|
|
|
|
|
|
|
463 |
for concept, generalization in self.concept_generalizations.items():
|
464 |
if concept in user_input.lower():
|
465 |
inferred_knowledge = f"This reminds me of a general principle: {generalization}."
|
466 |
+
self.store_information("Inferred Knowledge", inferred_knowledge)
|
467 |
|
|
|
|
|
468 |
belief_updates = Counter()
|
469 |
for msg in self.conversation_history:
|
470 |
if msg['role'] == 'user':
|
471 |
+
sentences = nltk.sent_tokenize(msg['content'])
|
472 |
for sentence in sentences:
|
473 |
belief_updates[sentence] += 1
|
474 |
|
475 |
for statement, count in belief_updates.items():
|
476 |
+
if count >= 2:
|
477 |
+
current_belief_score = self.belief_system.get(statement, 0.5)
|
478 |
+
updated_belief_score = min(current_belief_score + 0.2, 1.0)
|
479 |
self.update_belief_system(statement, updated_belief_score)
|
480 |
|
|
|
|
|
481 |
if user_input:
|
482 |
self.store_information("User Input", user_input)
|
483 |
|
|
|
|
|
484 |
if self.internal_state["emotions"]["curiosity"] > 0.8 and "?" in user_input:
|
485 |
print("Simulating external knowledge seeking...")
|
|
|
486 |
simulated_external_info = "This is a placeholder for external information I would have found."
|
487 |
self.store_information("External Knowledge", simulated_external_info)
|
|
|
488 |
|
|
|
|
|
489 |
for cause, effects in self.causal_rules_db.items():
|
490 |
if cause in user_input.lower():
|
491 |
for effect in effects:
|
|
|
500 |
return f"Error generating response: {str(e)}"
|
501 |
|
502 |
def extract_entities(self, text):
|
|
|
|
|
503 |
words = text.split()
|
504 |
entities = [word for word in words if word.isalpha() and word.istitle()]
|
505 |
return entities
|
506 |
|
507 |
def extract_relationships(self, text):
|
|
|
|
|
508 |
sentences = text.split('.')
|
509 |
relationships = []
|
510 |
for sentence in sentences:
|
|
|
514 |
if words[i].istitle() and words[i+2].istitle():
|
515 |
relationships.append((words[i], words[i+1], words[i+2]))
|
516 |
return relationships
|
517 |
+
|
518 |
def messages_to_prompt(self, messages):
|
519 |
prompt = ""
|
520 |
for msg in messages:
|
|
|
572 |
|
573 |
self.update_goals(message)
|
574 |
|
|
|
575 |
emotion_deltas = {}
|
576 |
cognitive_load_deltas = {}
|
577 |
engagement_delta = 0
|
|
|
613 |
if len(self.conversation_history) > 10:
|
614 |
self.conversation_history = self.conversation_history[-10:]
|
615 |
|
616 |
+
|
617 |
+
|
618 |
custom_css = """
|
619 |
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
|
620 |
body, .gradio-container {
|
|
|
695 |
flex-direction: column-reverse;
|
696 |
}
|
697 |
"""
|
|
|
698 |
with gr.Blocks(theme='soft', css=custom_css) as demo:
|
699 |
with gr.Column():
|
700 |
chatbot = gr.Chatbot(
|