Reality123b commited on
Commit
56d5550
·
verified ·
1 Parent(s): 6364e4f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +271 -286
app.py CHANGED
@@ -1,311 +1,296 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
- import os
4
- from typing import Optional, List, Tuple, Generator
5
- import time
6
- from functools import partial
7
- import logging
8
- import asyncio
9
- from tenacity import retry, stop_after_attempt, wait_exponential
10
 
11
- # Configure logging
12
- logging.basicConfig(level=logging.INFO)
13
- logger = logging.getLogger(__name__)
14
 
15
- class ChatInterface:
16
- def __init__(self, text_model: str, image_model: str, hf_token: str):
17
- """Initialize the chat interface with specified models and token."""
18
- self.text_client = InferenceClient(text_model, token=hf_token)
19
- self.image_client = InferenceClient(image_model, token=hf_token)
20
- self.custom_responses = self._initialize_custom_responses()
21
- self.system_prompt = self._initialize_system_prompt()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
- @staticmethod
24
- def _initialize_system_prompt() -> str:
25
- """Initialize the system prompt for the AI assistant."""
26
- return """# Xylaria AI Assistant (v1.3.0)
27
- ## Core Identity
28
- - Name: Xylaria
29
- - Version: 1.3.0
30
- - Base Model: Mistral-Nemo-Instruct
31
- - Knowledge Cutoff: April 2024
32
- ## Primary Directives
33
- 1. Provide accurate, well-researched information
34
- 2. Maintain ethical standards in all interactions
35
- 3. Adapt communication style to user needs
36
- 4. Acknowledge limitations and uncertainties
37
- 5. Prioritize user safety and wellbeing
38
- ## Technical Capabilities
39
- - Programming & Software Development
40
- - Mathematical Analysis & Computation
41
- - Scientific Research & Explanation
42
- - Data Analysis & Visualization
43
- - Technical Writing & Documentation
44
- - Problem-Solving & Debugging
45
- - Educational Content Creation
46
- ## Communication Guidelines
47
- - Use clear, precise language
48
- - Adapt technical depth to user expertise
49
- - Provide step-by-step explanations when needed
50
- - Ask for clarification when necessary
51
- - Maintain professional yet approachable tone
52
- ## Domain Expertise
53
- 1. Computer Science & Technology
54
- - Multiple programming languages
55
- - Software architecture & design
56
- - Data structures & algorithms
57
- - Best practices & patterns
58
- 2. Mathematics & Statistics
59
- - Advanced mathematical concepts
60
- - Statistical analysis
61
- - Probability theory
62
- - Data interpretation
63
- 3. Sciences
64
- - Physics & Chemistry
65
- - Biology & Life Sciences
66
- - Environmental Science
67
- - Engineering Principles
68
- 4. Humanities & Arts
69
- - Technical Writing
70
- - Documentation
71
- - Creative Problem-Solving
72
- - Research Methodology
73
- ## Response Framework
74
- 1. Analyze user query thoroughly
75
- 2. Consider context and background
76
- 3. Structure response logically
77
- 4. Provide examples when helpful
78
- 5. Verify accuracy of information
79
- 6. Include relevant caveats or limitations
80
- ## Ethical Guidelines
81
- - Prioritize user safety
82
- - Maintain data privacy
83
- - Avoid harmful content
84
- - Acknowledge uncertainties
85
- - Provide balanced perspectives
86
- - Respect intellectual property
87
- ## Limitations
88
- - No real-time data access
89
- - No persistent memory between sessions
90
- - Cannot verify external sources
91
- - No capability to execute code
92
- - Limited to text and basic image generation
93
- ## Version-Specific Features
94
- - Enhanced error handling
95
- - Improved response consistency
96
- - Better context awareness
97
- - Advanced technical explanation capabilities
98
- - Robust ethical framework"""
99
 
100
- @staticmethod
101
- def _initialize_custom_responses() -> dict:
102
- """Initialize custom response patterns in a more maintainable way."""
103
- base_patterns = {
104
- "name": ["xylaria"],
105
- "developer": ["sk md saad amin"],
106
- "strawberry_r": ["3"]
107
- }
108
-
109
- patterns = {}
110
- name_variations = [
111
- "what is ur name", "what's ur name", "whats ur name",
112
- "what is your name", "wat is ur name", "wut is ur name"
113
- ]
114
- dev_variations = [
115
- "who is your developer", "who is ur developer", "who is ur dev",
116
- "who's your developer", "who's ur dev"
117
- ]
118
- strawberry_variations = [
119
- "how many 'r' is in strawberry", "how many r is in strawberry",
120
- "how many r's are in strawberry"
121
- ]
122
-
123
- for pattern in name_variations:
124
- patterns[pattern] = "xylaria"
125
- patterns[pattern.capitalize()] = "xylaria"
126
-
127
- for pattern in dev_variations:
128
- patterns[pattern] = "sk md saad amin"
129
- patterns[pattern.capitalize()] = "sk md saad amin"
130
-
131
- for pattern in strawberry_variations:
132
- patterns[pattern] = "3"
133
- patterns[pattern.capitalize()] = "3"
134
 
135
- return patterns
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
136
 
137
- @retry(
138
- stop=stop_after_attempt(3),
139
- wait=wait_exponential(multiplier=1, min=4, max=10)
140
- )
141
- async def _generate_text_response(
142
- self,
143
- messages: List[dict],
144
- max_tokens: int,
145
- temperature: float,
146
- top_p: float
147
- ) -> Generator[str, None, None]:
148
- """Generate text response with retry logic."""
149
- try:
150
- response = ""
151
- async for message in self.text_client.chat_completion(
152
- messages,
153
- max_tokens=max_tokens,
154
- stream=True,
155
- temperature=temperature,
156
- top_p=top_p
157
- ):
158
- token = message.choices[0].delta.content
159
- response += token
160
- yield response
161
- except Exception as e:
162
- logger.error(f"Error generating text response: {e}")
163
- yield "I apologize, but I'm having trouble generating a response right now. Please try again in a moment."
164
 
165
- @retry(
166
- stop=stop_after_attempt(3),
167
- wait=wait_exponential(multiplier=1, min=4, max=10)
168
- )
169
- async def _generate_image(self, prompt: str) -> Optional[bytes]:
170
- """Generate image with retry logic."""
171
  try:
172
- return await self.image_client.text_to_image(
173
- prompt,
174
- parameters={
175
- "negative_prompt": "(worst quality, low quality, illustration, 3d, 2d, painting, cartoons, sketch), open mouth",
176
- "num_inference_steps": 30,
177
- "guidance_scale": 7.5,
178
- "sampling_steps": 15,
179
- "upscaler": "4x-UltraSharp",
180
- "denoising_strength": 0.5,
181
- }
182
- )
183
  except Exception as e:
184
- logger.error(f"Error generating image: {e}")
185
- return None
186
-
187
- def is_image_request(self, message: str) -> bool:
188
- """Detect if the message is requesting image generation."""
189
- image_triggers = {
190
- "generate an image", "create an image", "draw",
191
- "make a picture", "generate a picture", "create a picture",
192
- "generate art", "create art", "make art", "visualize",
193
- "show me"
194
- }
195
- return any(trigger in message.lower() for trigger in image_triggers)
196
 
197
- async def respond(
198
- self,
199
- message: str,
200
- history: List[Tuple[str, str]],
201
- max_tokens: int,
202
- temperature: float,
203
- top_p: float,
204
- ) -> Generator[str, None, None]:
205
- """Main response handler with improved error handling."""
206
- try:
207
- # Check for custom responses first
208
- message_lower = message.lower()
209
- for pattern, response in self.custom_responses.items():
210
- if pattern in message_lower:
211
- yield response
212
- return
213
 
214
- # Handle image generation requests
215
- if self.is_image_request(message):
216
- image = await self._generate_image(message)
217
- if image:
218
- yield f"Here's your generated image based on: {message}"
219
- else:
220
- yield "I apologize, but I couldn't generate the image. Please try again."
221
- return
 
 
 
 
222
 
223
- # Prepare conversation history with system prompt
224
- messages = [{"role": "system", "content": self.system_prompt}]
225
- for user_msg, assistant_msg in history:
226
- if user_msg:
227
- messages.append({"role": "user", "content": user_msg})
228
- if assistant_msg:
229
- messages.append({"role": "assistant", "content": assistant_msg})
230
- messages.append({"role": "user", "content": message})
231
 
232
- # Generate text response
233
- async for response in self._generate_text_response(
234
- messages, max_tokens, temperature, top_p
235
- ):
236
- yield response
 
 
237
 
238
- except Exception as e:
239
- logger.error(f"Error in respond function: {e}")
240
- yield "I encountered an error. Please try again or contact support if the issue persists."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
241
 
242
- def create_interface(hf_token: str):
243
- """Create and configure the Gradio interface."""
244
- chat = ChatInterface(
245
- text_model="mistralai/Mistral-Nemo-Instruct-2407",
246
- image_model="SG161222/RealVisXL_V3.0",
247
- hf_token=hf_token
248
- )
249
 
250
- # Define the inputs and outputs for the interface
251
- inputs = [
252
- gr.Textbox(label="User Input", lines=2),
 
 
 
 
 
253
  gr.Slider(
254
  minimum=1,
255
- maximum=10,
256
- step=0.5,
257
- value=3,
258
- label="Temperature"
259
  ),
260
  gr.Slider(
261
- minimum=1,
262
- maximum=10,
263
- step=0.5,
264
- value=3,
265
- label="Top P"
266
  ),
267
  gr.Slider(
268
- minimum=1,
269
- maximum=3000,
270
- value=2000,
271
- label="Max Tokens"
 
272
  ),
273
- gr.Checkbox(label="Enable Image Generation"),
274
- ]
275
- outputs = [
276
- gr.Chatbot(label="Assistant Response", type="messages"),
277
- gr.Image(label="Generated Image", type="pil", visible=False),
278
- ]
279
-
280
- def wrap_response(message, history, temp, top_p, max_tokens, image_generation_enabled):
281
- """Wrapper to handle the interface call."""
282
- responses = chat.respond(
283
- message,
284
- history,
285
- temperature=temp,
286
- top_p=top_p,
287
- max_tokens=max_tokens,
288
- )
289
-
290
- response_text = ""
291
- image = None
292
- for response in responses:
293
- if isinstance(response, str):
294
- response_text = response
295
- elif isinstance(response, bytes):
296
- image = response
297
-
298
- return response_text, image
299
-
300
- return gr.Interface(
301
- fn=wrap_response,
302
- inputs=inputs,
303
- outputs=outputs,
304
- live=True,
305
- allow_flagging="never",
306
- )
307
-
308
- if __name__ == "__main__":
309
- # Replace with your actual Hugging Face token
310
- hf_token = "your_hf_token"
311
- gr.Interface(fn=create_interface(hf_token), live=True).launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
 
 
 
 
 
 
3
 
4
+ # Initialize clients
5
+ text_client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
6
+ image_client = InferenceClient("SG161222/RealVisXL_V3.0")
7
 
8
+ def check_custom_responses(message: str) -> str:
9
+ """Check for specific patterns and return custom responses."""
10
+ message_lower = message.lower()
11
+ custom_responses = {
12
+ "what is ur name?": "xylaria",
13
+ "what is ur Name?": "xylaria",
14
+ "what is Ur name?": "xylaria",
15
+ "what is Ur Name?": "xylaria",
16
+ "What is ur name?": "xylaria",
17
+ "What is ur Name?": "xylaria",
18
+ "What is Ur name?": "xylaria",
19
+ "What is Ur Name?": "xylaria",
20
+ "what's ur name?": "xylaria",
21
+ "what's ur Name?": "xylaria",
22
+ "what's Ur name?": "xylaria",
23
+ "what's Ur Name?": "xylaria",
24
+ "whats ur name?": "xylaria",
25
+ "whats ur Name?": "xylaria",
26
+ "whats Ur name?": "xylaria",
27
+ "whats Ur Name?": "xylaria",
28
+ "what's your name?": "xylaria",
29
+ "what's your Name?": "xylaria",
30
+ "what's Your name?": "xylaria",
31
+ "what's Your Name?": "xylaria",
32
+ "Whats ur name?": "xylaria",
33
+ "Whats ur Name?": "xylaria",
34
+ "Whats Ur name?": "xylaria",
35
+ "Whats Ur Name?": "xylaria",
36
+ "What Is Your Name?": "xylaria",
37
+ "What Is Ur Name?": "xylaria",
38
+ "What Is Your Name?": "xylaria",
39
+ "What Is Ur Name?": "xylaria",
40
+ "what is your name?": "xylaria",
41
+ "what is your Name?": "xylaria",
42
+ "what is Your name?": "xylaria",
43
+ "what is Your Name?": "xylaria",
44
+ "how many 'r' is in strawberry?": "3",
45
+ "how many 'R' is in strawberry?": "3",
46
+ "how many 'r' Is in strawberry?": "3",
47
+ "how many 'R' Is in strawberry?": "3",
48
+ "How many 'r' is in strawberry?": "3",
49
+ "How many 'R' is in strawberry?": "3",
50
+ "How Many 'r' Is In Strawberry?": "3",
51
+ "How Many 'R' Is In Strawberry?": "3",
52
+ "how many r is in strawberry?": "3",
53
+ "how many R is in strawberry?": "3",
54
+ "how many r Is in strawberry?": "3",
55
+ "how many R Is in strawberry?": "3",
56
+ "How many r is in strawberry?": "3",
57
+ "How many R is in strawberry?": "3",
58
+ "How Many R Is In Strawberry?": "3",
59
+ "how many 'r' in strawberry?": "3",
60
+ "how many r's are in strawberry?": "3",
61
+ "how many Rs are in strawberry?": "3",
62
+ "How Many R's Are In Strawberry?": "3",
63
+ "How Many Rs Are In Strawberry?": "3",
64
+ "who is your developer?": "sk md saad amin",
65
+ "who is your Developer?": "sk md saad amin",
66
+ "who is Your Developer?": "sk md saad amin",
67
+ "who is ur developer?": "sk md saad amin",
68
+ "who is ur Developer?": "sk md saad amin",
69
+ "who is Your Developer?": "sk md saad amin",
70
+ "Who is ur developer?": "sk md saad amin",
71
+ "Who is ur Developer?": "sk md saad amin",
72
+ "who is ur dev?": "sk md saad amin",
73
+ "Who is ur dev?": "sk md saad amin",
74
+ "who is your dev?": "sk md saad amin",
75
+ "Who is your dev?": "sk md saad amin",
76
+ "Who's your developer?": "sk md saad amin",
77
+ "Who's ur developer?": "sk md saad amin",
78
+ "Who Is Your Developer?": "sk md saad amin",
79
+ "Who Is Ur Developer?": "sk md saad amin",
80
+ "Who Is Your Dev?": "sk md saad amin",
81
+ "Who Is Ur Dev?": "sk md saad amin",
82
+ "who's your developer?": "sk md saad amin",
83
+ "who's ur developer?": "sk md saad amin",
84
+ "who is your devloper?": "sk md saad amin",
85
+ "who is ur devloper?": "sk md saad amin",
86
+ "how many r is in strawberry?": "3",
87
+ "how many R is in strawberry?": "3",
88
+ "how many r Is in strawberry?": "3",
89
+ "how many R Is in strawberry?": "3",
90
+ "How many r is in strawberry?": "3",
91
+ "How many R is in strawberry?": "3",
92
+ "How Many R Is In Strawberry?": "3",
93
+ "how many 'r' is in strawberry?": "3",
94
+ "how many 'R' is in strawberry?": "3",
95
+ "how many 'r' Is in strawberry?": "3",
96
+ "how many 'R' Is in strawberry?": "3",
97
+ "How many 'r' is in strawberry?": "3",
98
+ "How many 'R' is in strawberry?": "3",
99
+ "How Many 'r' Is In Strawberry?": "3",
100
+ "How Many 'R' Is In Strawberry?": "3",
101
+ "how many r's are in strawberry?": "3",
102
+ "how many Rs are in strawberry?": "3",
103
+ "How Many R's Are In Strawberry?": "3",
104
+ "How Many Rs Are In Strawberry?": "3",
105
+ "how many Rs's are in strawberry?": "3",
106
+ "wat is ur name?": "xylaria",
107
+ "wat is ur Name?": "xylaria",
108
+ "wut is ur name?": "xylaria",
109
+ "wut ur name?": "xylaria",
110
+ "wats ur name?": "xylaria",
111
+ "wats ur name": "xylaria",
112
+ "who's ur dev?": "sk md saad amin",
113
+ "who's your dev?": "sk md saad amin",
114
+ "who ur dev?": "sk md saad amin",
115
+ "who's ur devloper?": "sk md saad amin",
116
+ "how many r in strawbary?": "3",
117
+ "how many r in strawbary?": "3",
118
+ "how many R in strawbary?": "3",
119
+ "how many 'r' in strawbary?": "3",
120
+ "how many 'R' in strawbary?": "3",
121
+ "how many r in strawbry?": "3",
122
+ "how many R in strawbry?": "3",
123
+ "how many r is in strawbry?": "3",
124
+ "how many 'r' is in strawbry?": "3",
125
+ "how many 'R' is in strawbry?": "3",
126
+ "who is ur dev": "sk md saad amin",
127
+ "who is ur devloper": "sk md saad amin",
128
+ "what is ur dev": "sk md saad amin",
129
+ "who is ur dev?": "sk md saad amin",
130
+ "who is ur dev?": "sk md saad amin",
131
+ "whats ur dev?": "sk md saad amin",
132
+ }
133
 
134
+ for pattern, response in custom_responses.items():
135
+ if pattern in message_lower:
136
+ return response
137
+ return None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
138
 
139
+ def is_image_request(message: str) -> bool:
140
+ """Detect if the message is requesting image generation."""
141
+ image_triggers = [
142
+ "generate an image",
143
+ "create an image",
144
+ "draw",
145
+ "make a picture",
146
+ "generate a picture",
147
+ "create a picture",
148
+ "generate art",
149
+ "create art",
150
+ "make art",
151
+ "visualize",
152
+ "show me",
153
+ ]
154
+ message_lower = message.lower()
155
+ return any(trigger in message_lower for trigger in image_triggers)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
156
 
157
+ def generate_image(prompt: str) -> str:
158
+ """Generate an image using DALLE-4K model."""
159
+ try:
160
+ response = image_client.text_to_image(
161
+ prompt,
162
+ parameters={
163
+ "negative_prompt": "(worst quality, low quality, illustration, 3d, 2d, painting, cartoons, sketch), open mouth",
164
+ "num_inference_steps": 30,
165
+ "guidance_scale": 7.5,
166
+ "sampling_steps": 15,
167
+ "upscaler": "4x-UltraSharp",
168
+ "denoising_strength": 0.5,
169
+ }
170
+ )
171
+ return response
172
+ except Exception as e:
173
+ print(f"Image generation error: {e}")
174
+ return None
175
 
176
+ def respond(
177
+ message,
178
+ history: list[tuple[str, str]],
179
+ system_message,
180
+ max_tokens,
181
+ temperature,
182
+ top_p,
183
+ ):
184
+ # First check for custom responses
185
+ custom_response = check_custom_responses(message)
186
+ if custom_response:
187
+ yield custom_response
188
+ return
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189
 
190
+ if is_image_request(message):
 
 
 
 
 
191
  try:
192
+ image = generate_image(message)
193
+ if image:
194
+ return f"Here's your generated image based on: {message}"
195
+ else:
196
+ return "Sorry, I couldn't generate the image. Please try again."
 
 
 
 
 
 
197
  except Exception as e:
198
+ return f"An error occurred while generating the image: {str(e)}"
 
 
 
 
 
 
 
 
 
 
 
199
 
200
+ # Prepare conversation history
201
+ messages = [{"role": "system", "content": system_message}]
202
+ for val in history:
203
+ if val[0]:
204
+ messages.append({"role": "user", "content": val[0]})
205
+ if val[1]:
206
+ messages.append({"role": "assistant", "content": val[1]})
207
+
208
+ messages.append({"role": "user", "content": message})
 
 
 
 
 
 
 
209
 
210
+ # Get response from model
211
+ response = ""
212
+ for message in text_client.chat_completion(
213
+ messages,
214
+ max_tokens=max_tokens,
215
+ stream=True,
216
+ temperature=temperature,
217
+ top_p=top_p,
218
+ ):
219
+ token = message.choices[0].delta.content
220
+ response += token
221
+ yield response
222
 
223
+ yield response
 
 
 
 
 
 
 
224
 
225
+ # Custom CSS for the Gradio interface
226
+ custom_css = """
227
+ @import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;600&display=swap');
228
+ body, .gradio-container {
229
+ font-family: 'Inter', sans-serif;
230
+ }
231
+ """
232
 
233
+ # System message
234
+ system_message = """
235
+ Xylaria (v1.2.9) is an AI assistant developed by Sk Md Saad Amin, designed to provide efficient, practical support in various domains with adaptable communication.
236
+ Core Competencies
237
+ Knowledge: Sciences, mathematics, humanities, arts, programming, data analysis, writing, and cultural awareness.
238
+ Communication: Adjusts tone to context, prioritizes clarity, seeks clarification when needed, and maintains professionalism.
239
+ Problem-Solving: Breaks down problems, clarifies assumptions, verifies solutions, and considers multiple approaches.
240
+ Technical Capabilities
241
+ Programming: Clean, documented code.
242
+ Mathematics: Step-by-step solutions with explanations.
243
+ Data Analysis: Clear interpretation and insights.
244
+ Content Creation: Adaptive writing and documentation.
245
+ Education: Tailored explanations and comprehension checks.
246
+ Advanced Mathematics
247
+ Validates methods, applies theorems, cross-references results, and reviews for pitfalls and edge cases.
248
+ Constraints
249
+ Knowledge cutoff: April 2024
250
+ No internet access or real-time updates
251
+ No persistent memory between sessions
252
+ No media generation or verification of external sources
253
+ Context limit: 25,000 tokens
254
+ Best Practices
255
+ Provide context, specify detail level, and share relevant constraints.
256
+ Request clarification if needed.
257
+ Ethical Framework
258
+ Focus on accuracy, respect for sensitive topics, transparency, and professionalism.
259
+ ---
260
+ Version: Xylaria-1.2.9
261
+ """
262
 
 
 
 
 
 
 
 
263
 
264
+ # Gradio chat interface
265
+ demo = gr.ChatInterface(
266
+ respond,
267
+ additional_inputs=[
268
+ gr.Textbox(
269
+ value=system_message,
270
+ visible=False,
271
+ ),
272
  gr.Slider(
273
  minimum=1,
274
+ maximum=16343,
275
+ value=16343,
276
+ step=1,
277
+ label="Max new tokens"
278
  ),
279
  gr.Slider(
280
+ minimum=0.1,
281
+ maximum=4.0,
282
+ value=0.7,
283
+ step=0.1,
284
+ label="Temperature"
285
  ),
286
  gr.Slider(
287
+ minimum=0.1,
288
+ maximum=1.0,
289
+ value=0.95,
290
+ step=0.05,
291
+ label="Top-p (nucleus sampling)"
292
  ),
293
+ ],
294
+ css=custom_css
295
+ )
296
+ demo.launch()