API / app.py
Reality123b's picture
Update app.py
3c9fbfb verified
raw
history blame
7.19 kB
import os
import gradio as gr
from huggingface_hub import InferenceClient
class XylariaChat:
def __init__(self):
# Securely load HuggingFace token
self.hf_token = os.getenv("HF_TOKEN")
if not self.hf_token:
raise ValueError("HuggingFace token not found in environment variables")
# Initialize the inference client
self.client = InferenceClient(
model= os.getenv("MODEL_NAME"),
api_key=self.hf_token
)
# Initialize conversation history and persistent memory
self.conversation_history = []
self.persistent_memory = {}
# System prompt with more detailed instructions
self.system_prompt = """You are a helpful and harmless assistant. You are Xylaria developed by Sk Md Saad Amin(india, 12 year old). You should think step-by-step.
"""
def store_information(self, key, value):
"""Store important information in persistent memory"""
self.persistent_memory[key] = value
def retrieve_information(self, key):
"""Retrieve information from persistent memory"""
return self.persistent_memory.get(key)
def reset_conversation(self):
"""
Completely reset the conversation history, persistent memory,
and clear API-side memory
"""
# Clear local memory
self.conversation_history = []
self.persistent_memory.clear()
# Clear API-side memory by resetting the conversation
try:
# Attempt to clear any API-side session or context
self.client = InferenceClient(
model="Qwen/QwQ-32B-Preview",
api_key=self.hf_token
)
except Exception as e:
print(f"Error resetting API client: {e}")
return None # To clear the chatbot interface
def get_response(self, user_input):
# Prepare messages with conversation context and persistent memory
messages = [
{"role": "system", "content": self.system_prompt},
*self.conversation_history,
{"role": "user", "content": user_input}
]
# Add persistent memory context if available
if self.persistent_memory:
memory_context = "Remembered Information:\n" + "\n".join(
[f"{k}: {v}" for k, v in self.persistent_memory.items()]
)
messages.insert(1, {"role": "system", "content": memory_context})
# Generate response with streaming
try:
stream = self.client.chat.completions.create(
messages=messages,
temperature=0.5,
max_tokens=10240,
top_p=0.7,
stream=True
)
return stream
except Exception as e:
return f"Error generating response: {str(e)}"
def create_interface(self):
def streaming_response(message, chat_history):
# Clear input textbox
response_stream = self.get_response(message)
# If it's an error, return immediately
if isinstance(response_stream, str):
return "", chat_history + [[message, response_stream]]
# Prepare for streaming response
full_response = ""
updated_history = chat_history + [[message, ""]]
# Streaming output
for chunk in response_stream:
if chunk.choices[0].delta.content:
chunk_content = chunk.choices[0].delta.content
full_response += chunk_content
# Update the last message in chat history with partial response
updated_history[-1][1] = full_response
yield "", updated_history
# Update conversation history
self.conversation_history.append(
{"role": "user", "content": message}
)
self.conversation_history.append(
{"role": "assistant", "content": full_response}
)
# Limit conversation history to prevent token overflow
if len(self.conversation_history) > 10:
self.conversation_history = self.conversation_history[-10:]
# Custom CSS for Inter font
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
body, .gradio-container {
font-family: 'Inter', sans-serif !important;
}
.chatbot-container .message {
font-family: 'Inter', sans-serif !important;
}
.gradio-container input,
.gradio-container textarea,
.gradio-container button {
font-family: 'Inter', sans-serif !important;
}
"""
with gr.Blocks(theme='soft', css=custom_css) as demo:
# Chat interface with improved styling
with gr.Column():
chatbot = gr.Chatbot(
label="Xylaria 1.4 Senoa",
height=500,
show_copy_button=True
)
# Input row with improved layout
with gr.Row():
txt = gr.Textbox(
show_label=False,
placeholder="Type your message...",
container=False,
scale=4
)
btn = gr.Button("Send", scale=1)
# Clear history and memory buttons
clear = gr.Button("Clear Conversation")
clear_memory = gr.Button("Clear Memory")
# Submit functionality with streaming
btn.click(
fn=streaming_response,
inputs=[txt, chatbot],
outputs=[txt, chatbot]
)
txt.submit(
fn=streaming_response,
inputs=[txt, chatbot],
outputs=[txt, chatbot]
)
# Clear conversation history
clear.click(
fn=lambda: None,
inputs=None,
outputs=[chatbot],
queue=False
)
# Clear persistent memory and reset conversation
clear_memory.click(
fn=self.reset_conversation,
inputs=None,
outputs=[chatbot],
queue=False
)
# Ensure memory is cleared when the interface is closed
demo.load(self.reset_conversation, None, None)
return demo
# Launch the interface
def main():
chat = XylariaChat()
interface = chat.create_interface()
interface.launch(
share=True, # Optional: create a public link
debug=True # Show detailed errors
)
if __name__ == "__main__":
main()